Из трапеции АВСD имеем: углы ВОС и АОD равны как вертикальные, углы ОАD и ОСВ, а также углы ODA и ОВС равны как внутренние разносторонние. Следовательно, треугольники BOC и AOD подобны по трем углам. Из теоремы подобных треугольников: отношение площадей подобных треугольников равно квадрату коэффициенту их подобия, то есть S(AOD)/S(BOC) = k^2. Имеем: k^2 = 27/3, k^2 = 9, k = 3. Стороны подобных треугольников пропорциональны: AO/OC = k, имеем: 6/OC = 3, OC = 6/3, OC = 2. АС = АО + ОС, АС = 6 + 2 = 8. ответ: 8.
В равнобедренной трапеции угол при большем основании будет равен 60 градусов. Проведем диагональ перпендикулярно боковой стороне. В образовавшемся треугольнике на нижнем основании трапеции один из углов 60 градусов, значит другой - 30 градусов. Если окружность описана около трапеции, значит она же описана около этого треугольника. Т.к. треугольник прямоугольный, то радиус описанной окружности равен половине гипотенузы. Отсюда нижнее основание трапеции равно 8. Боковая сторона равна 4 как катет, лежащий против угла в 30 градусов и равный половине гипотенузы. По теореме Пифагора найдем высоту трапеции h=кв.корень(16-4)=кв.корень12=2кв.корня3. площадь равна 0,5(4+8)*h=12кв.корень3.
ответ: 8.
Если окружность описана около трапеции, значит она же описана около этого треугольника. Т.к. треугольник прямоугольный, то радиус описанной окружности равен половине гипотенузы. Отсюда нижнее основание трапеции равно 8. Боковая сторона равна 4 как катет, лежащий против угла в 30 градусов и равный половине гипотенузы.
По теореме Пифагора найдем высоту трапеции h=кв.корень(16-4)=кв.корень12=2кв.корня3.
площадь равна 0,5(4+8)*h=12кв.корень3.