Полученная фигура--пирамида , в основании которой лежит прямоугольный треугольник(ВСД-обозначим) , где ВС-гипотенуза . А--вершина пирамиды , АК--высота. Причём , К∈ВС и является центром описанной окружности основания , а в прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы, т. е. ВК=КС=8см. АК перпендикулярна ВС( высота). Из ΔАВК (угол К=90 град) по теореме Пифагора : АВ²=АК²+ВК² АВ²=8²+15²=64+225=289 АВ=√289=17(см) Точка А по условию задачи равноудалена от вершин Δ, значит АВ=АД=АС=17см
Гомотетия является преобра
зованием подобия.Коэффи
циент гомотетии "k" есть ко
эффициент подобия, равный
"k".
Любые два неравных парал
лельных отрезка гомотетич
ны друг другу. Есть две гомо
тетии, переводящие один от
резок в другой:
1) с коэффициентом k;
2) с коэффициентом -k.
Коэффициенты гомотетий
равны по модулю, но проти
воположны по знаку.
Если параллельные отрезки
равны, то |k|=1.
Если коэффициент гомоте
тии равен 1, то имеем тож
дественное преобразование:
образ каждой точки совпада
ет с ней самой. Тогда каждый
отрезок отображается сам на
себя. Не подходит. Нужно, что
бы один отрезок отображался
в другой
Если k=1 , то один отрезок отоб
ражается в другой параллель
ным переносом ( а это движе
ние, а не гомотетия) .
Остается: k= -1
Для равных параллельных от
резков есть только ОДНА го
мотетия k= -1 , переводящая
один отрезок в другой (это
центральная симметрия или
поворот на 180°).
АВ²=8²+15²=64+225=289
АВ=√289=17(см)
Точка А по условию задачи равноудалена от вершин Δ, значит АВ=АД=АС=17см