1. Боковая поверхность усечённого конуса находится по формуле:S=πL(r+R), где L - образующая, а r и R - радиусы оснований. 2. Из условия можно найти, что 120π=10π(r+R), откуда r+R=12. 3. В сечении такой конус представляет из себя равнобедренную трапецию, разделённую пополам (вертикально) высотой конуса, которая по условию равна 8. Одна половина представляет из себя прямоугольную трапецию, в которой высота равна 8, боковая сторона 10, а r и R- основания. 4. Из прямоугольной трапеции по т. Пифагора можно найти разность R-r. Она равна 6. Тогда, зная, что r+R=12 и R-r=6, находим, что r=3, а R=9
Объем правильной треугольной призмы равен произведению площади основания на высоту призмы.
Площадь основания - это площадь правильного треугольника со стороной а. Формула площади равностороннего треугольника S=(a²√3):4 Высоту призмы найдем из прямоугольного треугольника,
катеты в котором- высота призмы и высота треугольника=основания,
а гипотенуза - данное в условии расстояние b от вершины одного основания до противолежащей стороны другого основания. Высота правильного треугольника находится по формуле h=а√3):2 Высоту призмы найдем по теореме Пифагора: Н= √(b²-h²)=√(b²-3а²:4)
2. Из условия можно найти, что 120π=10π(r+R), откуда r+R=12.
3. В сечении такой конус представляет из себя равнобедренную трапецию, разделённую пополам (вертикально) высотой конуса, которая по условию равна 8. Одна половина представляет из себя прямоугольную трапецию, в которой высота равна 8, боковая сторона 10, а r и R- основания.
4. Из прямоугольной трапеции по т. Пифагора можно найти разность R-r. Она равна 6. Тогда, зная, что r+R=12 и R-r=6, находим, что r=3, а R=9
Картинка в этой задаче действительно желательна.
Объем правильной треугольной призмы равен произведению площади основания на высоту призмы.
Площадь основания - это площадь правильного треугольника со стороной а.
Формула площади равностороннего треугольника
S=(a²√3):4
Высоту призмы найдем из прямоугольного треугольника,
катеты в котором- высота призмы и высота треугольника=основания,
а гипотенуза - данное в условии расстояние b от вершины одного основания до противолежащей стороны другого основания.
Высота правильного треугольника находится по формуле
h=а√3):2
Высоту призмы найдем по теореме Пифагора:
Н= √(b²-h²)=√(b²-3а²:4)
V= (a²√3):4)·√(b²-3а²:4)