Параллельные прямые не пересекаются ни в какой геометрии. Просто, например, в евклидовой геометрии, через точку можно провести одну прямую, параллельную данной, в геометрии Лобачевского-Бояи - пучок прямых, параллельных данной, а в геометрии Римана параллельных прямых вообще нет, все прямые пересекаются. Про геометрии с непостоянной кривизной пространства, вроде сферической, распространятся не буду из экономии места. Главное- параллельные прямые не пересекаются, но не во всех геометриях вообще существуют параллельные прямые.
Пусть С - начало координат
Ось X - CB
Ось Y - Перпендикулярно X в сторону A
Ось Z - СС1
1)
Координаты точек
D (√13;0;√13/2)
N(3√13/4;√39/4;√13)
Вектора
СD ( √13;0;√13/2)
DN( -√13/4;√39/4;√13/2)
CD*DN = -13/4 + 13/4 =0 - перпендикулярны.
2)
Уравнение плоскости
BCC1
y=0
Уравнение плоскости
CDN
ax+by+cz=0
подставляем координаты точек D и N
√13a + √13c/2 =0
3√13a/4 + √39b/4 + √13c =0
Пусть a=1 тогда с = -2 b= 5√3/3
Уравнение
x +5√3y/3 - 2z =0
Косинус искомого угла
5√3/3 / √(1+25/3+4) = √(5/8)
Синус √(3/8)
Тангенс √(3/5)= √15/5