Интересно, где Вы учитесь, если такие задачи задают. Вот решение этой задачи без теории (вывод формул ищите в учебнике или в записях занятий) Мне не нравится обозначение радиусов, я их буду обозначать r1, r2, r3; Окружность, вписанная в исходный треугольник (её радиус я обозначу просто r), является вневписанной для каждого из трех отсеченных. Если построить вневписанные окружности к исходному треугольнику, с радиусами ρ1, ρ2, ρ3; то очевидно (в силу подобия отсеченных треугольников исходному) будут выполнены пропорции ρ1/r = r/r1; и то же самое для двух других. то есть ρ1 = r^2/r1; ρ2 = r^2/r2; ρ3 = r^2/r3; Остается подставить это в известные соотношения 1/r = 1/ρ1 + 1/ρ2 + 1/ρ3; то есть r = r1 + r2 + r3; и 4R = ρ1 + ρ2 + ρ3 - r; где R - радиус описанной окружности. то есть 4R = r^2*(1/r1 + 1/r2 + 1/r3 - 1/r); r = r1 + r2 + r3; это все. Я бы конечно мог привести вывод этих формул, но Вам бы никогда не задали эту задачу, если бы не выводили их на занятиях. К примеру, площадь S исходного треугольника равна S = (p - a)*ρ1 = (p - b)*ρ2 = (p - c)*ρ3 = p*r; откуда 1/ρ1 + 1/ρ2 + 1/ρ3 = (p - a)/S + (p - b)/S + ( p - c)/2 = (3p - a - b - c)/S = p/S = 1/r; Вывод формулы для R намного сложнее технически, но по сути - то же самое.
Т.к. дан косинус, то нужно построить прямоугольный треугольник))) 1) строим две пересекающиеся перпендикулярные прямые)) обозначаем точку пересечения С ---это вершина прямого угла))) это будут катеты в будущем прямоугольном треугольнике... осталось построить гипотенузу... сos(x) = 0.75 = 3/4 по определению: косинус ---это отношение противолежащего катета к гипотенузе... т.е. противолежащий к нужному углу катет будет равен 3 см (или 6 м или 9 км...), а гипотенуза соответственно 4 см (или 8 м или 12 км...))) 2) на одной из двух построенных прямых откладываем от вершины прямого угла 3 см (например))) ---обозначаем точку А. 3) из точки А раствором циркуля в 4 см строим окружность... она пересечется с другой перпендикулярной прямой ---обозначаем точку В. АВ--гипотенуза 4 см СА--катет 3 см искомый угол ВАС его косинус = АС / АВ = 3/4 = 0.75
Мне не нравится обозначение радиусов, я их буду обозначать r1, r2, r3;
Окружность, вписанная в исходный треугольник (её радиус я обозначу просто r), является вневписанной для каждого из трех отсеченных. Если построить вневписанные окружности к исходному треугольнику, с радиусами ρ1, ρ2, ρ3; то очевидно (в силу подобия отсеченных треугольников исходному) будут выполнены пропорции
ρ1/r = r/r1; и то же самое для двух других.
то есть ρ1 = r^2/r1; ρ2 = r^2/r2; ρ3 = r^2/r3;
Остается подставить это в известные соотношения
1/r = 1/ρ1 + 1/ρ2 + 1/ρ3; то есть r = r1 + r2 + r3;
и
4R = ρ1 + ρ2 + ρ3 - r; где R - радиус описанной окружности.
то есть 4R = r^2*(1/r1 + 1/r2 + 1/r3 - 1/r); r = r1 + r2 + r3;
это все.
Я бы конечно мог привести вывод этих формул, но Вам бы никогда не задали эту задачу, если бы не выводили их на занятиях.
К примеру, площадь S исходного треугольника равна
S = (p - a)*ρ1 = (p - b)*ρ2 = (p - c)*ρ3 = p*r; откуда
1/ρ1 + 1/ρ2 + 1/ρ3 = (p - a)/S + (p - b)/S + ( p - c)/2 = (3p - a - b - c)/S = p/S = 1/r;
Вывод формулы для R намного сложнее технически, но по сути - то же самое.
1) строим две пересекающиеся перпендикулярные прямые))
обозначаем точку пересечения С ---это вершина прямого угла)))
это будут катеты в будущем прямоугольном треугольнике...
осталось построить гипотенузу...
сos(x) = 0.75 = 3/4
по определению: косинус ---это отношение противолежащего катета к гипотенузе...
т.е. противолежащий к нужному углу катет будет равен
3 см (или 6 м или 9 км...), а гипотенуза соответственно
4 см (или 8 м или 12 км...)))
2) на одной из двух построенных прямых откладываем от вершины прямого угла 3 см (например))) ---обозначаем точку А.
3) из точки А раствором циркуля в 4 см строим окружность...
она пересечется с другой перпендикулярной прямой ---обозначаем точку В.
АВ--гипотенуза 4 см
СА--катет 3 см
искомый угол ВАС
его косинус = АС / АВ = 3/4 = 0.75