Построим SO пл. АВС. SA, SB, SC - наклонные, а рав ные наклонные имеют равные проекции, поэтому АО=ВО = СО; поэтому в пл. АВСАО = R,R- радиус описанной окружности. ΔАВС - правильный; про должим АО, СО и ВО до пересечения их со сторонами треугольника. (из свойств правильного треугольника). Соединим точки 5 и В, Ах и 5, С\ и 5. линейный угол двугранного угла SACB. линейный угол двугранного угла SABC. - линейный угол двугранного угла SBCA (по определению). ΔOB1S = ΔOC1S = ΔOA1S - по двум катетам (ОВ1 = ОС1 = ОА1 = r, r - радиус вписанной окружности в ΔABC, SO - общий катет), (из равенства треугольников). Раз все ребра тетраэдра равны, то доказанное выше справедливо и для всех двугранных углов. Поэтому все двугранные углы равны. Отыщем один из линейных углов двугранного угла, например, двугранного угла SBCA. Пусть а - ребро тетраэдра, то имеем ΔBSC: SA1 =а sin 60° ΔАВС: ОА1 ΔSA1O: cos φ φ - острый угол. Отсюда: φ = ответ: φ =
1-й треугольник малый катет a большой катет b гипотенуза с по Пифагору c² = a²+b² (*) b = a+5 (**) 2-й треугольник малый катет a-8 большой катет b+4 гипотенуза c По Пифагору c² = (a-8)²+(b+4)² (***) Три уравнения, три неизвестных. Подставляем b из второго в первое и третье c² = a²+(a+5)² c² = (a-8)²+(a+5+4)²
Построим SO пл. АВС.
SA, SB, SC - наклонные, а рав ные наклонные имеют равные проекции, поэтому АО=ВО = СО; поэтому в пл. АВСАО = R,R- радиус описанной окружности.
ΔАВС - правильный; про должим АО, СО и ВО до пересечения их со сторонами треугольника.
(из свойств правильного треугольника).
Соединим точки 5 и В, Ах и 5, С\ и 5.
линейный угол двугранного угла SACB.
линейный угол двугранного угла SABC.
- линейный угол двугранного угла SBCA (по определению).
ΔOB1S = ΔOC1S = ΔOA1S - по двум катетам (ОВ1 = ОС1 = ОА1 = r, r - радиус вписанной окружности в ΔABC, SO - общий катет),
(из равенства треугольников).
Раз все ребра тетраэдра равны, то доказанное выше справедливо и для всех двугранных углов.
Поэтому все двугранные углы равны.
Отыщем один из линейных углов двугранного угла, например, двугранного угла SBCA.
Пусть а - ребро тетраэдра, то имеем
ΔBSC: SA1 =а sin 60°
ΔАВС: ОА1
ΔSA1O: cos φ
φ - острый угол.
Отсюда: φ =
ответ: φ =
малый катет a
большой катет b
гипотенуза с
по Пифагору
c² = a²+b² (*)
b = a+5 (**)
2-й треугольник
малый катет a-8
большой катет b+4
гипотенуза c
По Пифагору
c² = (a-8)²+(b+4)² (***)
Три уравнения, три неизвестных.
Подставляем b из второго в первое и третье
c² = a²+(a+5)²
c² = (a-8)²+(a+5+4)²
a²+(a+5)² = (a-8)²+(a+9)²
2a² + 10a + 25 = a² - 16a +64 + a² + 18a + 81
10a + 25 = - 16a + 64 + 18a + 81
10a + 25 = 2a + 145
8a = 120
a = 15
b = a+5 = 20
c² = a²+b² = 15² + 20² = 225 + 400 = 625
c = √625 = 25
Периметр первого треугольника
P₁ = a + b + c = 15 + 20 + 25 = 60
Периметр второго треугольника
P₁ = (a-8) + (b+4) + c = (15-8) + (20+4) + 25 = 7 + 24 + 25 = 56