В данном треугольнике углы при МР равны, и потому треугольник - равнобедренный с равными МК+КР.
Биссектриса к МК делит эту сторону пополам, значит, она является и медианой. В таком случае МР=КР Но по условию и КР=МК. Если КР=МК=МР, то треугольник - равносторонний и все углы в нем равны 60° Биссектриса в нем не только и медиана, но и высота. Можно по формуле высоты ( можно и по теореме Пифагора), определить сторону. Можно и через синус 60° МР=9,6:sin(60°) МР=9,6: √3/2 МР=9,6·2:√3=19,2·√3:√3·√3=19,2·√3:3=6,4·√3 ответ:6,4·√3
В подобных треугольниках ABC и KMN равны углы В и М, С и N, АС = 3 см, KN = 6 см, MN = 4 см, ∠А = 30°
Найти: а) ВС, б) S (АВС) / S (KMN) в) AD / BD
a) ВС / MN = AC / KN ВС = AC * MN / KN = 3 * 4 / 6 = 2 см Т. к. треугольники подобны, то соответственные углы равны, поэтому - ∠K = ∠А = 30°
в) Т. к. линейные размеры треугольника KMN в два раза больше треугольника АВС, то отношение площади тр-ка KMN к площади тр-ка АВС = 4, или: S (АВС) / S (KMN) = 1 / 4 (отношение площадей фигур равно квадрату отношений их сторон) .
в) Пусть биссектриса угла С делит сторону АВ в точке D. Тогда биссектриса угла делит противоположную сторону треугольника в отношении соседних сторон, т. е: AD / BD = АС / ВС = 3 /2
В данном треугольнике углы при МР равны, и потому треугольник - равнобедренный с равными МК+КР.
Биссектриса к МК делит эту сторону пополам, значит, она является и медианой. В таком случае МР=КР
Но по условию и КР=МК.
Если КР=МК=МР, то треугольник - равносторонний и все углы в нем равны 60°
Биссектриса в нем не только и медиана, но и высота.
Можно по формуле высоты ( можно и по теореме Пифагора), определить сторону.
Можно и через синус 60°
МР=9,6:sin(60°)
МР=9,6: √3/2
МР=9,6·2:√3=19,2·√3:√3·√3=19,2·√3:3=6,4·√3
ответ:6,4·√3
АС = 3 см,
KN = 6 см,
MN = 4 см,
∠А = 30°
Найти:
а) ВС,
б) S (АВС) / S (KMN)
в) AD / BD
a) ВС / MN = AC / KN
ВС = AC * MN / KN = 3 * 4 / 6 = 2 см
Т. к. треугольники подобны, то соответственные углы равны, поэтому - ∠K = ∠А = 30°
в) Т. к. линейные размеры треугольника KMN в два раза больше треугольника АВС,
то отношение площади тр-ка KMN к площади тр-ка АВС = 4, или: S (АВС) / S (KMN) = 1 / 4
(отношение площадей фигур равно квадрату отношений их сторон) .
в) Пусть биссектриса угла С делит сторону АВ в точке D.
Тогда биссектриса угла делит противоположную сторону треугольника в отношении соседних сторон, т. е:
AD / BD = АС / ВС = 3 /2