Окружность, описанная около равнобокой трапеции АВСД, описана и около треугольника АСД. Найдём высоту трапеции (она же и высота треугольника АСД): Н = √(15² - ((20-2)/2)²) = √(225 - 81) = √ 144 = 12. Найдём длину стороны АС этого треугольника: АС = √(12² + (20-2)/2+2)²) = √(144+ 121) = √265 = 16.27882. Площадь треугольника АСД: S = (1/2)*20*12 = 120. Радиус описанной окружности равен: R = (abc / 4S) = (15*20* 16.27882) / (4*120) = 4883.646 / 480 = 10.17426. В приложении даётся аналог расчёта радиуса и чертёж для пояснения.
1) Как называется утверждение которое нельзя доказать?
Аксиома.
2) Из теоремы "Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны" составьте обратную.
Меняем "если" и "то" местами: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
3) Как называются прямые на плоскости, не имеющие общих точек?
Параллельными.
4) Если прямая a параллельна прямой b, и прямая а параллельна прямой с, то что можно сказать о прямых b и c?
Тогда b║c.
5) Изобразите: две параллельные прямые пересеченные секущей, отметьте числами 5 и 6 углы, которые являются односторонними.
См. рисунок.
6) О равенстве каких углов можно утверждать, если параллельные прямые пересечены секущей.
Тогда равны накрест лежащие углы: ∠1 = ∠7, ∠4 = ∠6
и равны соответственные углы: ∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8.
Найдём высоту трапеции (она же и высота треугольника АСД):
Н = √(15² - ((20-2)/2)²) = √(225 - 81) = √ 144 = 12.
Найдём длину стороны АС этого треугольника:
АС = √(12² + (20-2)/2+2)²) = √(144+ 121) = √265 = 16.27882.
Площадь треугольника АСД:
S = (1/2)*20*12 = 120.
Радиус описанной окружности равен:
R = (abc / 4S) = (15*20* 16.27882) / (4*120) =
4883.646 / 480 = 10.17426.
В приложении даётся аналог расчёта радиуса и чертёж для пояснения.