решить Длины оснований прямоугольной трапеции равны 2 м и 3 м, а длина меньшей боковой стороны равна 6 м.1. Выполни чертеж.
2. Вычисли площадь трапеции.
3. Большая диагональ делит трапецию на два треугольника. Вычисли длину большей диагонали и отношение площадей этих треугольн
иков
Сторона ВС=5+11=16 см.так как сторона ВС разбивается биссектрисой АМ на отрезки 5 см и 11 см.Тогда сторона АD=16 см,как противоположные стороны прямоугольника.
Биссектриса разбивает угол А на равные углы ВАМ и DАМ,равные по 45 градусов,так как все улы у прямоугольника прямые.
В треугольнике АВМ угол ВМА=180-(90+45)=45 градусов,так как сумма углов в треугольнике равна 180 градусов,а угол АВМ=90 градусов,угол ВАМ=45 градусов.Тогда треугольник АВМ-равнобедренный(угол ВАМ=углу ВМА=45 градусов).
тогда АВ=ВМ как боковые стороны равнобедренного треугольника.
Тогда АВ=СD=5 см как противоположные стороны прямоугольника
Тогда периметр прямоугольника ABCD =2*16+2*5=32+10=42 см
ответ:42 см
Нехай маємо прямокутний трикутник ABC (∠C=90), у якого AC=√5 см – катет і BH=4 см – проекція катета BC на гіпотенузу AB (за умовою).
прямокутний трикутник, рисунок Проведемо висоту CH=h до гіпотенузи AB (AB⊥CH).
За властивістю прямокутного трикутника
h^2= AH•BH
(це виводиться із подібності прямокутних трикутників ABC і CBH).
Нехай AH=x - проекція катета AC на гіпотенузу AB, тоді h^2=4x.
У прямокутному ΔACH (∠AHC=90), у якого AH=x і CH=h=2√x – катети, AC=√5 см – гіпотенуза, за теоремою Піфагора запишемо:
AH^2+CH^2=AC^2, x^2+4x=5, x^2+4x-5=0,
за теоремою Вієта, отримаємо
x1=1 і x2=-5<0, звідси AH=1 см.
AB=AH+BH=1+4=5 см – гіпотенуза ΔABC.
Відповідь: 5.