Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника.
Первый признак Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны
Второй признак Если угол одного треугольника равен углу другого, а стороны, образующие тот угол в одном треугольнике, пропорциональны соответствующим сторонам другого, то такие треугольники подобны
Третий признак Если три стороны одного треугольника пропорциональны трём сходственным сторонам другого, то треугольники подобны.
Пусть и - такие треугольники, что , и .
Совместим треугольник с треугольником так, чтобы точка A совпала c и сторона AC пошла по . Тогда вследствие равенства этих сторон, точка C совместится с , а вследствие равенства углов и сторона AB пойдет по , а вследствие равенства этих сторон точка B совпадет с , поэтому сторона CB совместиться с (так как две точки можно соединить только одной прямой). Таким образом, треугольники совпадут, то есть будут равны.
Нетрудно сосчитать, что третий угол 30 градусов. Наименьшая высота h выходит из угла 105 градусов, и делит треугольник на два прямоугольных, один из которых равнобедренный из-за угла в 45 градусов, а в другом один из углов 30 градусов.
В результате через h можно выразить сторону, к которой она перпендикулярна, она равна h + h*√3= h*(√3 + 1). Отсюда S = h^2(√3+1)/2 = (√3 + 1); h = √2.
Даже если вы не знаете, чему равен котангенс 30 градусов (а он равен √3, откуда и получено второе слагаемое), вы легко можете все это получить, используя теорему Пифагора и то, что катет напротив угла 30 градусов равен половине гипотенузы.
Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника.
Первый признак
Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны
Второй признак
Если угол одного треугольника равен углу другого, а стороны, образующие тот угол в одном треугольнике, пропорциональны соответствующим сторонам другого, то такие треугольники подобны
Третий признак
Если три стороны одного треугольника пропорциональны трём сходственным сторонам другого, то треугольники подобны.
Пусть и - такие треугольники, что , и .
Совместим треугольник с треугольником так, чтобы точка A совпала c и сторона AC пошла по . Тогда вследствие равенства этих сторон, точка C совместится с , а вследствие равенства углов и сторона AB пойдет по , а вследствие равенства этих сторон точка B совпадет с , поэтому сторона CB совместиться с (так как две точки можно соединить только одной прямой). Таким образом, треугольники совпадут, то есть будут равны.
Нетрудно сосчитать, что третий угол 30 градусов. Наименьшая высота h выходит из угла 105 градусов, и делит треугольник на два прямоугольных, один из которых равнобедренный из-за угла в 45 градусов, а в другом один из углов 30 градусов.
В результате через h можно выразить сторону, к которой она перпендикулярна, она равна h + h*√3= h*(√3 + 1). Отсюда S = h^2(√3+1)/2 = (√3 + 1); h = √2.
Даже если вы не знаете, чему равен котангенс 30 градусов (а он равен √3, откуда и получено второе слагаемое), вы легко можете все это получить, используя теорему Пифагора и то, что катет напротив угла 30 градусов равен половине гипотенузы.