Если прямые паралельные, то угол 1 равен углу между 2 и 3(для удобства назовем его 4). Угол 4 и 3, так как n и
m паралельны, вместе дают 180°. Чтобы узнать угол 3, отнмаем 4 угол от 180°:
180°-55°=125°
Угол 3=125°
2)
Углы 1, 2 и ещё один, который подпишем как 4, являются углами треугольника. Как известно, треугольник имеет 180°, так что чтобы получить угол 1, надо отнять от 180° угол 2 и 4. Но 4 неизвестный, так что сначала найдём его. Этот угол находиться над три, значит, так как c и d паралельные, вместе они равны 180°. Чтобы найти угол 4, надо отнять от 180° угол 3.
180°-84°=96°
Значит, мы добавляем угол 4 к углу 2 и отнимаем их от 180° и получаем значение угла 1:
а) ответ да. Прямые параллельны, если они лежат на одной плоскости, перпендикулярной двум первым плоскостям.
красные прямые лежат в параллельных плоскостях и при этом параллельны в третьей плоскости
б) ответ нет. Признак скрещивающихся прямых.
Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.
Т. е. если прямая по условию находится в параллельной плоскости, она не как не может эту плоскость пересекать
1)
Если прямые паралельные, то угол 1 равен углу между 2 и 3(для удобства назовем его 4). Угол 4 и 3, так как n и
m паралельны, вместе дают 180°. Чтобы узнать угол 3, отнмаем 4 угол от 180°:
180°-55°=125°
Угол 3=125°
2)
Углы 1, 2 и ещё один, который подпишем как 4, являются углами треугольника. Как известно, треугольник имеет 180°, так что чтобы получить угол 1, надо отнять от 180° угол 2 и 4. Но 4 неизвестный, так что сначала найдём его. Этот угол находиться над три, значит, так как c и d паралельные, вместе они равны 180°. Чтобы найти угол 4, надо отнять от 180° угол 3.
180°-84°=96°
Значит, мы добавляем угол 4 к углу 2 и отнимаем их от 180° и получаем значение угла 1:
180°-(96°+50°)=34°
Угол 1=34°
а) ответ да. Прямые параллельны, если они лежат на одной плоскости, перпендикулярной двум первым плоскостям.
красные прямые лежат в параллельных плоскостях и при этом параллельны в третьей плоскости
б) ответ нет. Признак скрещивающихся прямых.
Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.
Т. е. если прямая по условию находится в параллельной плоскости, она не как не может эту плоскость пересекать