п равильная четырехугольная призма - это многогранник, основания которого являются правильными четырехугольниками - квадратами, а боковые грани — равными прямоугольниками.
так как сторона квадрата ( верхнего основания призмы) противолежит углу 30 градусов, она равна половине диагонали призмы и равна 5 см. нужно теперь найти высоту призмы. для этого придется найти диагональ боковой грани из треугольника, гипотенузой в котором является диагональ призмы, а катетами сторона квадрата и диагональ боковой грани. она равна √(100 -25)= √75 =5√3теперь находим высоту призмыh² =(5√3)² -5² =√50=5√2площадь полной поверхности призмы равна площади ее четырех боковых граней плюс площадь оснований. площадь боковых граней равна4*5*5√2=100√2площадь оснований 2*5*5=50 см²
площадь полной поверхности призмы100√2 +50=50(2√2+1) см
п равильная четырехугольная призма - это многогранник, основания которого являются правильными четырехугольниками - квадратами, а боковые грани — равными прямоугольниками.
так как сторона квадрата ( верхнего основания призмы) противолежит углу 30 градусов, она равна половине диагонали призмы и равна 5 см. нужно теперь найти высоту призмы. для этого придется найти диагональ боковой грани из треугольника, гипотенузой в котором является диагональ призмы, а катетами сторона квадрата и диагональ боковой грани. она равна √(100 -25)= √75 =5√3теперь находим высоту призмыh² =(5√3)² -5² =√50=5√2площадь полной поверхности призмы равна площади ее четырех боковых граней плюс площадь оснований. площадь боковых граней равна4*5*5√2=100√2площадь оснований 2*5*5=50 см²
площадь полной поверхности призмы100√2 +50=50(2√2+1) см
Так как CL - биссектриса прямого угла С, то
∠ACL = ∠LCB = 90° : 2 = 45°;
2) ∠MCB = ∠LCB - ∠LCM = 45° - 15° = 30°
3) Используем свойство : медиана CM, опущенная на гипотенузу прямоугольного треугольника AB, равна половине гипотенузы.
АМ = МВ = СМ.
4) ΔСМВ - равнобедренный, так как СМ=МВ, значит углы при основании равнобедренного треугольника тоже равны:
∠СМВ = ∠МВС = 30°.
5) ∠САВ = 90° - 30° = 60°;
6) ΔАНС - прямоугольный (с прямым углом Н), так как СН - высота.
∠АСН = 90- 60=30°.
7) ∠LCH = ∠ACL - ∠ACH = 45° - 30° = 15°/
ответ: величина угла LCH = 15°.