Пусть С - точка, которую надо найти. Так как точка С находится на оси абсцисс, то она имеет координаты (х, 0). Определим х.
Используя формулу расстояние между точками, найдем 1) расстояние АС между точками А и С АС^2=(х-3)^2+(0-(-2))^2 АС^2=(х-3)^2+4; 2) расстояние ВС между точками В и С ВС^2=(х-1)^2+(0-2)^2 ВС^2=(х-1)^2+4.
Т.к. точка С равноудалена от точек А и В, то АС=ВС, а значит (х-3)^2+4=(х-1)^2+4 (х-3)^2=(х-1)^2 х^2-6х+9=х^2-2х+1 -6х+2х=1-9 -4х=-8 х=-8:(-4) х=2.
По двум известным сторонам AD и AE площадь треугольнике ADE проще всего найти по формуле: половина произведения двух сторон на синус угла между ними... т.е. нам нужен синус угла А для угла А можно найти его косинус из треугольника АВС по т.косинусов (станет очевидно, что это тупоугольный треугольник, т.к. косинус угла --число отрицательное), а вот синус любого угла из треугольника --всегда число положительное и по основному тригонометрическому тождеству sin²x + cos²x = 1 его можно найти, зная косинус угла))
Используя формулу расстояние между точками, найдем
1) расстояние АС между точками А и С
АС^2=(х-3)^2+(0-(-2))^2
АС^2=(х-3)^2+4;
2) расстояние ВС между точками В и С
ВС^2=(х-1)^2+(0-2)^2
ВС^2=(х-1)^2+4.
Т.к. точка С равноудалена от точек А и В, то АС=ВС, а значит
(х-3)^2+4=(х-1)^2+4
(х-3)^2=(х-1)^2
х^2-6х+9=х^2-2х+1
-6х+2х=1-9
-4х=-8
х=-8:(-4)
х=2.
Таким образом, точка С имеет координаты С(2,0).
т.е. нам нужен синус угла А
для угла А можно найти его косинус из треугольника АВС по т.косинусов (станет очевидно, что это тупоугольный треугольник, т.к. косинус угла --число отрицательное),
а вот синус любого угла из треугольника --всегда число положительное
и по основному тригонометрическому тождеству
sin²x + cos²x = 1
его можно найти, зная косинус угла))