Ян Гус стал сам началом революции. Сначала просто возмущаясь он просто вел моральную войну против церкви. Но после смерти его соратники развернули на столько глобальное восстание, что даже армия Папы Римского не сразила их достоинство.
Ян Гус беспощадно обличал духовенство за то , что оно отступает от провозглашённой в Евангелии бедности. Он возмущался торговлей церковными должностями в Риме, продажей индульгенции в Чехии и называл папу главным мошенником. «Даже последний грошик, который прячет бедная старушка, и тот умеет вытянуть недостойный священнослужитель. Как же не сказать после этого, что он хитрее и злее вора?»- говорил Ян Гус
Ян Гус беспощадно обличал духовенство за то , что оно отступает от провозглашённой в Евангелии бедности. Он возмущался торговлей церковными должностями в Риме, продажей индульгенции в Чехии и называл папу главным мошенником. «Даже последний грошик, который прячет бедная старушка, и тот умеет вытянуть недостойный священнослужитель. Как же не сказать после этого, что он хитрее и злее вора?»- говорил Ян Гус
Р=3R*sqrt(3)
Откуда
R=P/3*sqrt(3)=45/3*sqrt(3)=15*sqrt(3)
Радиус окружности описанной около восьмиугольника определяется по формуле
R=a/2sin(360/16)=a/2sin(22,5°)
Откуда
a=R*2sin(22,5°)=2*15*sqrt(3)*sin(22,5°)=30*1,7*0,38=19,38
2. Площадь квадрата равна
S=a^2
Определим радиус окружности
R^2=a^2+a^2=2a^2
Площадь круга равна
Sк=pi*R^2=2*pi*a^2=144*pi
3. L=pi*r*a/180, где a – градусная мера дуги, r- радиус окружности
L=pi*3*150/180=2,5*pi
4. Сторона квадрата равна p/4=48/4=12
Диагональ квадрата равна
d^2=a^2+a^2=144+144=288
d=12*sqrt(2)
Радиус квадрата вписанного в окружность равна
R=d/2=6*sqrt(2)
Сторона правильного пятиугольника L, вписанная в эту окружность равна
L=2R*sin(36°)=12*sqrt(2)*sin(36°)=12*1,4*0,588=9,88
5. Площадь кольца находим по формуле:
S=pi* (R^2−r^)
S=pi*(7^2-3^2)=pi*(49-9)=40*pi
6. Треугольник равносторонний, так как угол равен 60°, радиус окружности равен 4
Найдем площадь треугольника по формуле
Sт=R^2*sqrt(3)/4
Sт=16*sqrt(3)/4=4*sqrt(3)
Найдем площадь сектора по формуле
Sc=pi*R^2*(60/360)=pi*16/6==8*pi/3
Найдем площадь сегмента
Sсм=Sс-Sт=8*pi/3-4*sqrt(3)=1,449
вроде как то так