эта на теорему косинусов, но для того, чтобы начать решать через теорему, нужно знать стороны. а для этого нам даны координаты. найдем коориданты векторов ab,bc,ac. для этого вспомним правило: чтобы найти координаты вектора, нужно из координат конца вектора, вычесть координаты начала вектора.
ab(1-0; -1-1; 2+1)=ab(1; -2; 3)
bc(3-1; 1+1; 0-2)=bc(2; 2; -2)
ac(3-0; 1-1; 0+1)=ac(3; 0; 1)
теперь найдем длину этих векторов.
теперь запишем теорему косинусов, используя косинус угла с.
Теорема . три высоты любого треугольника пересекаются в одной точке. доказательство: пусть abc - данный треугольник . пусть прямые, содержащие высоты ap и bq треугольника abc пересекаются в точке o. проведем через точку a прямую, параллельную отрезку bc, через точку b прямую, параллельную отрезку ac, а через точку c - прямую, параллельную отрезку ab. все эти прямые попарно пересекаются. пусть точка пересечения прямых, параллельных сторонам ac и bc - точка m, точка пересечения прямых, параллельных сторонам ab и bc - точка l, а прямых, параллельным ab и ac - точка k. точки klm не лежат на одной прямой, (иначе бы прямая ml совпадала бы с прямой mk, а значит, прямая bc была бы параллельна прямой ac, или совпадала бы с ней, то есть точки a, b и c лежали бы на одной прямой, что противоречит определению треугольника) . итак, точки k, l, m составляют треугольник. ma параллельно bc, и mb параллельно ac по построению. а значит, четырёхугольник macb - параллелограмм. следовательно, ma = bc, mb = ac. аналогично al = bc = ma, bk = ac = mb, kc = ab = cl. значит, ap и bq - серединные перпендикуляры к сторонам треугольника klm. они пересекаются в точке o, а значит, co - тоже срединный перпендикуляр. co перпендикулярно kl, kl параллельно ab, а значит co перпендикулярно ab. пусть r - точка пересечения ab и cq. тогда cr перпендикулярно ab, то есть cr - это высота треугольника abc. точка o принадлежит всем прямым, содержащим высоты треугольника abc. значит, прямые, содержащие высоты этого треугольника пересекаются в одной точке. что и требовалось доказать. может правильно )
эта на теорему косинусов, но для того, чтобы начать решать через теорему, нужно знать стороны. а для этого нам даны координаты. найдем коориданты векторов ab,bc,ac. для этого вспомним правило: чтобы найти координаты вектора, нужно из координат конца вектора, вычесть координаты начала вектора.
ab(1-0; -1-1; 2+1)=ab(1; -2; 3)
bc(3-1; 1+1; 0-2)=bc(2; 2; -2)
ac(3-0; 1-1; 0+1)=ac(3; 0; 1)
теперь найдем длину этих векторов.
теперь запишем теорему косинусов, используя косинус угла с.