Отрезки касательных, проведенных из одной точки к окружности равны. 1. Поэтому ВД = ВЕ = 7, а АД=AF=9, тогда АВ = АД+ДВ = 9+7=16
2. Центральный угол ВОС опирается на дугу ВС и равен угловой мере этой дуги. Значит угловая мера дуги ВС = 76°. А вписанный угол ВАС, опирающийся на ту же дугу в два раза меньше угловой величины дуги <BAC = <BOC/2 = 76°/2=36°
3. Вписать в окружность четырехугольник можно в том случае, если сумма противолежащих углов равна 180°
Против угла В лежит угол Д, поэтому <B= 180°-76°=104°
Объяснение:
Отрезки касательных, проведенных из одной точки к окружности равны. 1. Поэтому ВД = ВЕ = 7, а АД=AF=9, тогда АВ = АД+ДВ = 9+7=16
2. Центральный угол ВОС опирается на дугу ВС и равен угловой мере этой дуги. Значит угловая мера дуги ВС = 76°. А вписанный угол ВАС, опирающийся на ту же дугу в два раза меньше угловой величины дуги <BAC = <BOC/2 = 76°/2=36°
3. Вписать в окружность четырехугольник можно в том случае, если сумма противолежащих углов равна 180°
Против угла В лежит угол Д, поэтому <B= 180°-76°=104°
На всякий <C=180°-65°=115°
1. Пусть х - один из вертикальных углов, тогда угол, смежный с ним 180° - х, так как сумма смежных углов равна 180°.
Вертикальные углы равны, тогда 2х - сумма двух вертикальных углов.
Получаем уравнение:
2x + 30° = 180° - x
3x = 150°
x = 50°
ответ: каждый из двух вертикальных углов равен 50°.
2. Пусть х - один из углов, тогда угол, смежный с ним 180° - х, так как сумма смежных углов равна 180°.
Получаем уравнение:
1/8 x + 3/4 (180° - x) = 90° |· 8
x + 6 (180° - x) = 720°
x + 1080° - 6x = 720°
5x = 360°
x = 72° - один из смежных углов.
180° - 72° = 108° - второй угол.
Разность данных углов:
108° - 72° = 36°
ответ: 36°.
3. ∠1 + ∠2 + ∠3 - ∠4 = 280° по условию задачи.
∠1 = ∠3 и ∠2 = ∠4 как вертикальные, значит
2 · ∠1 = 280°
∠1 = 140°
∠3 = ∠1 = 140°
∠2 = 180° - ∠1 = 180° - 140° = 40°, так как ∠2 и ∠1 смежные, а сумма смежных углов равна 180°.
∠4 = ∠2 = 40°
ответ: 40°, 40°, 140°, 140°.