Найдём третью сторону треугольника по теореме косинусов.
Т. косинусов: Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
a²=b²+c²−2⋅b⋅c⋅cosA
a²=8²+ 8²−2⋅8⋅8⋅cos60°
a²=64+64 - 2·8·8·¹/₂
а² = 64
а= 8
2й решения.
2 стороны равны, значит треугольник равнобедренный. Треугольник равнобедренный, значит, углы при основании равны. Углы при основании (180-60)/2 = 60°. Все углы равны, значит, треугольник равносторонний, и третья сторона равна 8 см
8см
Объяснение:
1й решения.
Найдём третью сторону треугольника по теореме косинусов.
Т. косинусов: Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
a²=b²+c²−2⋅b⋅c⋅cosA
a²=8²+ 8²−2⋅8⋅8⋅cos60°
a²=64+64 - 2·8·8·¹/₂
а² = 64
а= 8
2й решения.
2 стороны равны, значит треугольник равнобедренный. Треугольник равнобедренный, значит, углы при основании равны. Углы при основании (180-60)/2 = 60°. Все углы равны, значит, треугольник равносторонний, и третья сторона равна 8 см
131.
1) а) Пусть x - первый угол, тогда 5x - второй угол. Сумма односторонних углов равна 180°, поэтому составим уравнение:
x + 5x = 180°
6x = 180°
x = 30° - первый угол
5 * 30° = 150° - второй угол
б) Аналогично. x - один угол, 8x - второй угол. Уравнение:
x + 8x = 180°
9x = 180°
x = 20° - первый угол
8 * 20° = 160° - второй угол
2) а) x - один угол, x + 50° - второй угол. Уравнение:
x + x + 50° = 180°
2x = 130°
x = 65° - первый угол
65° + 50° = 115° - второй угол
б) x - первый угол, x + 70° - второй угол. Уравнение:
x + x + 70° = 180°
2x = 110°
x = 55° - первый угол
55° + 70° = 125° - второй угол
132.
1) ∠CBD и ∠ADB; ∠DBA и ∠BDC
2) ∠DAB и ∠ABD
3) а) ∠BCD = 47°; б) ∠BDA = 38°
133.
1) ∠MDA; AB
2) ∠DEC; BC
3) ∠BDE; AB
134.
а) ∠BDE = 48°; ∠ADE = 132°
б) ∠BED = 75°; ∠CEK = 75°