решить. Геометрия 10 класс. ОЧЕНЬ НАДО! 1. Дан ромб ABCD. Через вершину С ромба проведена прямая с, перпендикулярная прямым AC и CD. Докажите, что прямая BD перпендикулярна плоскости прямых с и AC.
2. Точка А находится на расстоянии a от вершин квадрата со стороной a. Найдите расстояние от точки А до плоскости квадрата.
3. Прямые a,b и с, проходящие через точку О, попарно перпендикулярны. Докажите, что плоскость, проходящая через прямые a и b, перпендикулярна плоскости, проходящей через прямые a и c.
4. Через каждую из диагоналей квадрата проведена плоскость, перпендикулярная второй его диагонали. Докажите, что эти плоскости перпендикулярны.
8см
Объяснение:
Теорема: Отрезки касательных к окружности, проведенные из одной точки, равны:
1) BM = BF MD = DL
FA = KA EK = LE
2) Pcde = CD + DE + CE =
= CD + (DL + LE) + CE = (CD + MD) + (EK +CE) = CM + CK =
= (BC - BM) + (AC - AK)
Т.к. ΔАВС - равнобедренный, то
ВС = АС = (Pabc - AB)/2 = (20 - 6)/2 = 7(cм)
Pcde = ВС + АС - ВМ - АК = 2 * 7 - ВМ - АК = 14 - ВМ - АК
3) Центр вписанной окружности лежит на биссектрисе. Но в равнобедренном треугольнике высота, а так же медиана и биссектриса, проведенные к основанию совпадают, следовательно, СF - медиана и делит АВ пополам:
ВF = FA = 6 / 2 = 3 (см)
4) Т.к. отрезки касательных к окружности, проведенные из одной точки, равны, то
BF = BM = 3(см)
FA = AK = 3(см)
Pcde = 14- ВМ - АК = 14 -2*3 = 8(см)
Две параллельные прямые пересекаются третьей прямой, поэтому выполняются следующие положения: углы 2 и 4 равны как вертикальные, сумма 4 и вертикального угла углу 1 равна 180° как внутренние односторонние, значит сумма углов 1 и 2 равна 180°, угол 1 составляет 5 частей, угол 2 - 4 части, всего 9 частей, тогда 1 часть 180°: 9 = 20°. угол 1 5·20° = 100°, угол 2 - 4·20° = 80°. угол 4 равен 80°(как вертикальный углу 2). угол 3 и угол 4 – смежные, их сумма равна 180°. угол 3 равен 180° - угол 4 = 180° -80° = 100°.
Объяснение: