решить Геометрия 11 класс.
№1
Сторона основания правильной треугольной призмы равна 50см, диагональ боковой грани с плоскостью основания образует угол 45 градусов. Вычисли объём призмы.
№2
В цистерну цилиндрической формы налита вода до отметки 4 м (см. рис.).
Объём всей цистерны равен 10м3, а её высота — 8м.
Найди объём воды в цистерне.
№3
Куб описан вокруг цилиндра. Объём куба равен 216см3.
Вычисли объём цилиндра.
№4
Радиусы оснований усечённого конуса соответственно равны 10 см и 7 см, а высота равна 21 см. Вычисли объём конуса.
площадь большего основания усечённого конуса равна - ?
-Основные свойства ромба1. Имеет все свойства параллелограмма2. Диагонали перпендикулярны:
AC┴BD
3. Диагонали являются биссектрисами его углов:∠BAC = ∠CAD, ∠ABD = ∠DBC, ∠BCA = ∠ACD, ∠ADB = ∠BDC
4. Сумма квадратов диагоналей равна квадрату стороны умноженному на четыре:AC2 + BD2 = 4AB2
5. Точка пересечения диагоналей называется центром симметрии ромба.6. В любой ромб можно вписать окружность.7. Центром окружности вписанной в ромб будет точка пересечения его диагоналей.-Определение. Площадью ромба называется пространство ограниченное сторонами ромба, т.е. в пределах периметра ромба.Формулы определения площади ромба:1. Формула площади ромба через сторону и высоту:
S = a · ha
2. Формула площади ромба через сторону и синус любого угла:S = a2 · sinα
3. Формула площади ромба через сторону и радиус:S = 2a · r
4. Формула площади ромба через две диагонали:S = 1d1d225. Формула площади ромба через синус угла и радиус вписанной окружности:
S = 4r2sinα6. Формулы площади через большую диагональ и тангенс острого угла (tgα) или малую диагональ и тангенс тупого угла (tgβ):
S = 1d12 · tg(α/2)2S = 1d22 · tg(β/2)2
1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
ответ: искомый угол равен 45°.