№1 1) |_EAD=|_BEA-накрест лежащие при параллельных прямых BC и AD, следовательно |_BAE=|_BEA,так как треугольник BEA-равнобедренный (по условию), и углы при основании равны по 30 градусов. 2) BAE=180-(30+30)=180-60=120 градусов 3) |_В параллелограмме противоположные углы равны, значит |_D=|_B=120 градусов 4) |_C=30+30=60 градусов ответ:|_C=60 градусов; |_D=120 градусов №2 1) P(параллелограмма)=(AB+BC)*2 2) BC=BK+KC=18+10=28 3)AB=BK, так как биссектриса делит угол на два, и |_KAD=|_BAK=BKA, так как треугольник ABK-равнобедренный 4) Значит AB=BK=18 5) P=(28+18)*2=92 ответ:92
Пересечение двух прямых образует вертикальные углы. По свойству вертикальных углы равны между собой. Значит 2 противоположных угла буду равны между собой и равны 21°.
Сумма 4-х вертикальных углов, образованных пересечением 2-х прямых равна 360°.
Пэтому сумма 2-х других углов равна:
(360° - 2 * 21) / 2 = 159°.
или
Допустим, пересеклись прямые AB и CD в точке O (это писать не нужно, просто обозначить на рисунке)
1) |_EAD=|_BEA-накрест лежащие при параллельных прямых BC и AD, следовательно |_BAE=|_BEA,так как треугольник BEA-равнобедренный (по условию), и углы при основании равны по 30 градусов.
2) BAE=180-(30+30)=180-60=120 градусов
3) |_В параллелограмме противоположные углы равны, значит |_D=|_B=120 градусов
4) |_C=30+30=60 градусов
ответ:|_C=60 градусов; |_D=120 градусов
№2
1) P(параллелограмма)=(AB+BC)*2
2) BC=BK+KC=18+10=28
3)AB=BK, так как биссектриса делит угол на два, и |_KAD=|_BAK=BKA, так как треугольник ABK-равнобедренный
4) Значит AB=BK=18
5) P=(28+18)*2=92
ответ:92
Пересечение двух прямых образует вертикальные углы. По свойству вертикальных углы равны между собой. Значит 2 противоположных угла буду равны между собой и равны 21°.
Сумма 4-х вертикальных углов, образованных пересечением 2-х прямых равна 360°.
Пэтому сумма 2-х других углов равна:
(360° - 2 * 21) / 2 = 159°.
или
Допустим, пересеклись прямые AB и CD в точке O (это писать не нужно, просто обозначить на рисунке)
Дано: ∠AOD = 21°.
Найти: ∠AOC, ∠COB, ∠DOB.
∠COB = ∠AOD = 21° как вертикальные.
∠AOC = 180° - ∠AOD = 180° - 21° = 159° как смежные.
∠DOB = ∠AOC = 159° как вертикальные.
ответ: ∠AOC = ∠DOB = 159°, ∠COB = 21°.