Треугольники ВОМ и AOD подобны по двум углам (<AOD=<BOM как вертикальные, а <OАD=<BMА как накрест лежащие при параллельных ВС и AD и секущей АМ). Коэффициент подобия равен k=BM/AD=1/2. Тогда ОМ=(1/3)*АМ, OD=(2/3)*AD.
Если речь идет о векторах, то мы видим, что вектор ОР=ОМ+МР, причем вектор ОМ=(1/3)*АМ = (1/3)(АВ+BM) = (1/3)(АВ+AD/2) =AB/3+AD/6. Вектор MP=MC+CP = AD/2-AB/2. Тогда
Пусть дан четырёхугольник АВСD. Точка К - середина АВ, т.М - середина ВС, N и Т - середины СD и DA соответсвенно. По условию КN=ТМ. Проведем диагонали АС и ВD. Соединим середины сторон треугольников АВС, ВСD, CDA и DAB. В треугольниках АВС и АDC средние линии параллельны и равны половине диагонали АС исходного четырехугольника.⇒ КМ параллельна и равна ТN. Аналогично доказывается КТ=МN. Противоположные стороны КМNТ параллельны и равны. КМNТ - параллелограмм с равными диагоналями ( КN=МТ по условию), т.е. КМNТ - прямоугольник. А раз стороны КМNТ пересекаются под прямым углом, то и диагонали четырехугольника АВСD, которым они параллельны, также пересекаются под прямым углом, ч.т.д.
Вот на Ваш суд такой вариант (я его дал в
Треугольники ВОМ и AOD подобны по двум углам (<AOD=<BOM как вертикальные, а <OАD=<BMА как накрест лежащие при параллельных ВС и AD и секущей АМ). Коэффициент подобия равен k=BM/AD=1/2. Тогда ОМ=(1/3)*АМ, OD=(2/3)*AD.
Если речь идет о векторах, то мы видим, что вектор ОР=ОМ+МР, причем вектор ОМ=(1/3)*АМ = (1/3)(АВ+BM) = (1/3)(АВ+AD/2) =AB/3+AD/6. Вектор MP=MC+CP = AD/2-AB/2. Тогда
ОР=ОМ+МР = AB/3+AD/6+AD/2-AB/2 = (2/3)*AD - (1/6)*AB.
Или так: вектор ОР=ОD+DР, причем вектор ОD=(2/3)*BD.
Вектор BD=AD-AB. Тогда вектор OD=(2/3)*AD-(2/3)*AB.
ОР=ОD+DР = (2/3)*AD-(2/3)*AB+AB/2 = (2/3)*AD - (1/6)*AB.
Следовательно
ОР < (2/3)*AD + (1/6)*AB, что и требовалось доказать.
Пусть дан четырёхугольник АВСD. Точка К - середина АВ, т.М - середина ВС, N и Т - середины СD и DA соответсвенно. По условию КN=ТМ. Проведем диагонали АС и ВD. Соединим середины сторон треугольников АВС, ВСD, CDA и DAB. В треугольниках АВС и АDC средние линии параллельны и равны половине диагонали АС исходного четырехугольника.⇒ КМ параллельна и равна ТN. Аналогично доказывается КТ=МN. Противоположные стороны КМNТ параллельны и равны. КМNТ - параллелограмм с равными диагоналями ( КN=МТ по условию), т.е. КМNТ - прямоугольник. А раз стороны КМNТ пересекаются под прямым углом, то и диагонали четырехугольника АВСD, которым они параллельны, также пересекаются под прямым углом, ч.т.д.