Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
Рисуем циркулем произвольную окружность удобного размера ( циркуль не сводим - бережем отмеренный радиус).Проводим линейкой отрезок через центр окружности О - это будущая биссектриса треугольника( она же высота и медиана, поскольку треугольник равнобедренный) Ставим иглу циркуля снова в центр окружности, отмечаем на окружности карандашом точку А на расстоянии R (радиус). Измеряем циркулем расстояние от точки А до отрезка - биссектрисы и высоты треугольника, ставим точку Д, откладываем это же расстояние до окружности ставим точку В.Соединяем точки А, Д и В прямой - это основание равнобедренного треугольника. Стороны могут быть радиусы - треугольник АОВ или ставим точку С и соединяем с точками А и В - треугольник АСВ.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.
Рисуем циркулем произвольную окружность удобного размера ( циркуль не сводим - бережем отмеренный радиус).Проводим линейкой отрезок через центр окружности О - это будущая биссектриса треугольника( она же высота и медиана, поскольку треугольник равнобедренный) Ставим иглу циркуля снова в центр окружности, отмечаем на окружности карандашом точку А на расстоянии R (радиус). Измеряем циркулем расстояние от точки А до отрезка - биссектрисы и высоты треугольника, ставим точку Д, откладываем это же расстояние до окружности ставим точку В.Соединяем точки А, Д и В прямой - это основание равнобедренного треугольника. Стороны могут быть радиусы - треугольник АОВ или ставим точку С и соединяем с точками А и В - треугольник АСВ.