Решить . мне нужно другое решение подробное. окружность, вписанная в треугольник abc, касается его сторон в точках m, k и p. найдите углы треугольника abc, если углы треугольника mkp равны 50°, 59° и 71°.
Точка М равноудалена от вершин равностороннего треугольника АВС, значит она проецируется в центр треугольника АВС, так как проекции равных наклонных равны. Итак, точка Н - центр треугольника АВС. В правильном треугольнике АВС высота АР является и медианой и биссектрисой угла А. АР = (√3/2)*а - формула. АР = 3√3. Высота АР правильного треугольника АВС делится центром Н в отношении 2:1, считая от вершины (свойство). Значит АН=АР*(2/3) = 2√3. По Пифагору из треугольника АМН имеем: АМ=√(АН²+МН²) = √(12+4) = 4.
Прямые линии, соединяющие любую точку окружности с её центром, называют радиусами R.
Прямая АВ, соединяющая две точки окружности и проходящая через её центр О, называется диаметром D.
Части окружностей называются дугами.
Прямая СD, соединяющая две точки на окружности, называется хордой.
Прямая МN,которая имеет только одну общую точку с окружностью называется касательной.
Часть круга, ограниченная хордой СD и дугой, называется сигментом.
Часть круга, ограниченная двумя радиусами и дугой, называется сектором.
Две взаимно перпендикулярные горизонтальная и вертикальная линии, пересекающиеся в центре окружности, называются осями окружности.
Угол, образованный двумя радиусами КОА, называется центральным углом.
Два взаимно перпендикулярных радиуса составляют угол в 900 и ограничивают 1/4 окружности.
Точка М равноудалена от вершин равностороннего треугольника АВС, значит она проецируется в центр треугольника АВС, так как проекции равных наклонных равны. Итак, точка Н - центр треугольника АВС. В правильном треугольнике АВС высота АР является и медианой и биссектрисой угла А. АР = (√3/2)*а - формула. АР = 3√3. Высота АР правильного треугольника АВС делится центром Н в отношении 2:1, считая от вершины (свойство). Значит АН=АР*(2/3) = 2√3. По Пифагору из треугольника АМН имеем: АМ=√(АН²+МН²) = √(12+4) = 4.
ответ: АМ=4 ед.