1) в ΔАСН:
СН=0,5 (катет, лежащий против угла в 30° равен половине гипотенузы)
По теореме Пифагора:
АН² = АС² - СН² = 1 - 0,25 = 0,75
АН = √0,75 = 0,5 √3
в ΔАВС:
cos A = AC / AB
AB = 1 ÷ (√3 / 2) = 2√3 / 3
BH = AB - AH = 2√3 / 3 - 0,5√3 = (4√3 - 3√3) / 6 = √3 / 6
ответ: √3 / 6
2) АВ = 2 ВС = 2 (катет, лежащий против угла в 30° равен половине гипотенузы)
∠В = 180° - ∠С - ∠А = 60°
cos B = BH / BC
BH = 1/2 × 1 = 1/2
AH = AB - BH = 2 - 1/2 = 1 1/2 = 1,5
ответ: 1,5
3) sin A = CH / AC
CH = sin A × AC = 3/5 × 4 = 12/5 = 2,4
ответ: 2,4
1) в ΔАСН:
СН=0,5 (катет, лежащий против угла в 30° равен половине гипотенузы)
По теореме Пифагора:
АН² = АС² - СН² = 1 - 0,25 = 0,75
АН = √0,75 = 0,5 √3
в ΔАВС:
cos A = AC / AB
AB = 1 ÷ (√3 / 2) = 2√3 / 3
BH = AB - AH = 2√3 / 3 - 0,5√3 = (4√3 - 3√3) / 6 = √3 / 6
ответ: √3 / 6
2) АВ = 2 ВС = 2 (катет, лежащий против угла в 30° равен половине гипотенузы)
∠В = 180° - ∠С - ∠А = 60°
cos B = BH / BC
BH = 1/2 × 1 = 1/2
AH = AB - BH = 2 - 1/2 = 1 1/2 = 1,5
ответ: 1,5
3) sin A = CH / AC
CH = sin A × AC = 3/5 × 4 = 12/5 = 2,4
ответ: 2,4
Рассмотрим треугольник ВСД:
угол ВДС=90 градусов (так как СД – высота)
Угол ДСБ=41 градус (по условию)
Угол В=180-(ВДС+ДСБ)=180-(90+41)=49 градусов
Теперь рассмотрим треугольник АВС:
Угол С=90 градусов (по условию),
угол В=49 градусов
Угол А =180-(С+В)=180-(90+49)=41 градус
Рассмотрим треугольник АСД
Угол А=41 градус, угол АДС=90 градусов (так как СД – высота)
Угол АСД=180-(АДС+А)=180-(90+41)=49 градусов
(второй метод нахождения угла АСД=90-ДВС=90-41=49 градусов)