В ромбе диагонали взаимно перпендикулярны, являются биссектрисами углов ромба и в точке пересечения делятся пополам. Пусть ОВ=Х. Тогда в прямоугольном треугольнике ОАВ АВ=2*Х, так как угол ОАВ=30°. По Пифагору АО=√(4Х²-Х²)=Х√3. Тогда АС=Х*2√3. В треугольнике САВ АК - биссектриса угла САВ, значит по свойству биссектрисы внутреннего угла треугольника СК/ВК=АС/АВ или (2Х-12)/12 =Х*2√3/2Х. Или (2Х-12) =12√3. Отсюда Х=6+6√3. Итак, DB=2Х, АС=2Х√3. Площадь ромба равна S=D*d/2 или S=DB*AC/2 = 2X*2Х√3/2 = X²*2√3. Подставим значение Х: S=(6+6√3)²*2√3 = (36+72√3+108)*2√3 = 72√3+432+216√3= 432+288√3 ≈ 930,2cм² Второй вариант: В тр-ке АВК <KAB=15°, <ABK=120° и <BKA=45°. По теореме синусов 12/Sin15°= AB/Sin45°, откуда АВ=12*Sin45°/Sin15°. Итак АВ = 12*0,707/0,259 ≈ 32,76. Площадь ромба равна S=а²*Sinα или S = 32,76²*0,866≈ 929,4см²
Результаты равны с учетом погрешностей значений корней и синусов углов.
так же радиус можно найти по формуле R=b/(2*sin(pi/N))
b- сторона правильного многоугольника
N- количсетво углов в многоугольнике (равно количеству сторон)
приравниваем две формулы, выражаем b.
2. площадь квадрата равна квадрату его стороны, значит сторона квадрата равны корню квадратному из 72
опять используем известную уже формулу радиуса описанной окружности, R=b/(2*sin(pi/N)) и найдём радиус окружности.
площадь круга равна pi*R^{2} (число пи умноженнное на квадрат радиуса)
4. необходимо использовать формулы из задачи 1.
5. площадь вписанного 6_угольника S=(3sqrt{3}*a^{2})/2, отсюда находим сторону а и используем ее в следуещей формуле, откуда мы находим радиус окружности R=а/(2*sin(pi/N))
l=2*pi*R - длина окружности
6. площадь сектора находится по формуле S=frac{pi*R^{2}*alpha}{360}
Пусть ОВ=Х. Тогда в прямоугольном треугольнике ОАВ АВ=2*Х, так как угол ОАВ=30°. По Пифагору АО=√(4Х²-Х²)=Х√3.
Тогда АС=Х*2√3. В треугольнике САВ АК - биссектриса угла САВ, значит по свойству биссектрисы внутреннего угла треугольника СК/ВК=АС/АВ или (2Х-12)/12 =Х*2√3/2Х. Или (2Х-12) =12√3. Отсюда Х=6+6√3.
Итак, DB=2Х, АС=2Х√3. Площадь ромба равна S=D*d/2 или S=DB*AC/2 = 2X*2Х√3/2 = X²*2√3. Подставим значение Х:
S=(6+6√3)²*2√3 = (36+72√3+108)*2√3 = 72√3+432+216√3= 432+288√3 ≈ 930,2cм²
Второй вариант:
В тр-ке АВК <KAB=15°, <ABK=120° и <BKA=45°. По теореме синусов 12/Sin15°= AB/Sin45°, откуда АВ=12*Sin45°/Sin15°.
Итак АВ = 12*0,707/0,259 ≈ 32,76.
Площадь ромба равна S=а²*Sinα или S = 32,76²*0,866≈ 929,4см²
Результаты равны с учетом погрешностей значений корней и синусов углов.
1. R - радиус описанной окружности
a-сторона правильного треугольника
стороны правильного треугольника равны 45/3=15см
a/sin(pi/3)=2*R
так же радиус можно найти по формуле R=b/(2*sin(pi/N))
b- сторона правильного многоугольника
N- количсетво углов в многоугольнике (равно количеству сторон)
приравниваем две формулы, выражаем b.
2. площадь квадрата равна квадрату его стороны, значит сторона квадрата равны корню квадратному из 72
опять используем известную уже формулу радиуса описанной окружности, R=b/(2*sin(pi/N)) и найдём радиус окружности.
площадь круга равна pi*R^{2} (число пи умноженнное на квадрат радиуса)
4. необходимо использовать формулы из задачи 1.
5. площадь вписанного 6_угольника S=(3sqrt{3}*a^{2})/2, отсюда находим сторону а и используем ее в следуещей формуле, откуда мы находим радиус окружности R=а/(2*sin(pi/N))
l=2*pi*R - длина окружности
6. площадь сектора находится по формуле S=frac{pi*R^{2}*alpha}{360}