обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
Прежде чем решать задачу вспомним теорию: что такое "Пифагоров треугольник"?
будем говорить о Пифагоровой тройке: Это такие натуральные числа у которых выполняется равенство . т.е. Пифагоров треугольник это треугольник с целочисленными значениями для которых выполняется данное равенство.
Египетский треугольник это частный случай Пифагорова треугольника, т.е. к такому набору дополняется условие что
Пример числа 5,12,13 - Пифагоровы т.к. справедливо что
но они не будут образовывать Египетский треугольник т.к. 5:12:13 ≠ 3:4:5
Теперь перейдем к решению:
1) Найдет все стороны треугольника
По т. Пифагора второй катет:
Измерения треугольника 15,20,25
Этот треугольник Пифагоров т.к. стороны выражены целыми числами и справедливо равенство 15²+20²=25²
Проверим, будет ли такой треугольник Египетским:
Египетский треугольник: Это прямоугольный треугольник с целочисленными сторонами и отношение сторон 3:4:5
Проверим отношение сторон в нашем треугольнике
15:20:25= 3:4:5
Значит такой треугольник Пифагоров и как частный случай Египетский
2) Треугольник с катетами 4,5
найдем гипотенузу
по определению измерение гипотенузы не целочисленное- значит такой треугольник не будет Пифагоровым
меньший катет АС=6см, больший катет ВС=12√3 см
Объяснение:
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
АС ²=6×24=144
АС=√144=12см
Теперь найдём катет ВС по теореме Пифагора:
ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см
что такое "Пифагоров треугольник"?
будем говорить о Пифагоровой тройке: Это такие натуральные числа у которых выполняется равенство .
т.е. Пифагоров треугольник это треугольник с целочисленными значениями для которых выполняется данное равенство.
Египетский треугольник это частный случай Пифагорова треугольника, т.е. к такому набору дополняется условие что
Пример числа 5,12,13 - Пифагоровы т.к. справедливо что
но они не будут образовывать Египетский треугольник
т.к. 5:12:13 ≠ 3:4:5
Теперь перейдем к решению:
1) Найдет все стороны треугольника
По т. Пифагора второй катет:
Измерения треугольника 15,20,25
Этот треугольник Пифагоров т.к. стороны выражены целыми числами и справедливо равенство 15²+20²=25²
Проверим, будет ли такой треугольник Египетским:
Египетский треугольник:
Это прямоугольный треугольник с целочисленными сторонами и отношение сторон 3:4:5
Проверим отношение сторон в нашем треугольнике
15:20:25= 3:4:5
Значит такой треугольник Пифагоров и как частный случай Египетский
2) Треугольник с катетами 4,5
найдем гипотенузу
по определению измерение гипотенузы не целочисленное- значит такой треугольник не будет Пифагоровым