Решить: один острый угол прямоугольного треугольника 45° 1) один из катетов 8дм; найдите его второй катет 2) сумма катетов 28дм; найдите каждый катет 3) сумма гипотенузы и высоты, опущеной к ней, 21 дм. найдите гипотенузу и высоту
1) 8 дм, так как катеты равны 2) 14 дм, так как катеты равны 3) 7 и 14, так как если провести высоту на гипотенузу, она поделит её на 2 равные части, возьмем одну часть за x и она равна высоте, так как получается прямоугольный треугольник где катеты равны, получаем: 2x+x=21 x=7 - высота 2x = 2*7 = 14 гипотенуза
2) 14 дм, так как катеты равны
3) 7 и 14, так как если провести высоту на гипотенузу, она поделит её на 2 равные части, возьмем одну часть за x и она равна высоте, так как получается прямоугольный треугольник где катеты равны, получаем:
2x+x=21
x=7 - высота
2x = 2*7 = 14 гипотенуза