Надо воспользоваться формулой: sin(2α) = 2*sin(α)*cos(α).
Функцию sin(α) выразим через cos(α).
sin(α) = √(1 - cos²(α)).
Подставим в первое уравнение:
-3/5 = 2*√(1 - cos²(α))*cos(α). Возведём обе части в квадрат.
9/25 = 4*(1 - cos²(α))*cos²(α). Приведём к общему знаменателю и раскроем скобки.
9 = 100cos²(α)) - 100cos^4(α).
Получили биквадратное уравнение. Введём замену: cos²(α) = t.
Тогда уравнение имеет вид: 100t² - 100t + 9 = 0.
Ищем дискриминант:
D=(-100)^2-4*100*9=10000-4*100*9=10000-400*9=10000-3600=6400;
Дискриминант больше 0, уравнение имеет 2 корня:
t_1=(√6400-(-100))/(2*100)=(80-(-100))/(2*100)=(80+100)/(2*100)=180/(2*100)=180/200=0,9;
t_2=(-√6400-(-100))/(2*100)=(-80-(-100))/(2*100)=(-80+100)/(2*100)=20/(2*100)=20/200=0,1.
Обратная замена: cos(α) = ±√t.
cos(α1,2) = ±√0,9 ≈ ±0,94868.
cos(α3,4) = ±√0,1 ≈ ±0,31623.
Данным косинусам соответствуют углы:
(α1,2) = 18,43495 и 161,5651 градусов,
(α3,4) = 71,5651 и 108,43495 градусов.
По заданию угол должен быть в промежутке (90° < α < 135°).
ответ: cos α = -√0,1 ≈ -0,31623.
Відповідь:
Пояснення:
4) Нехай АР - х см, тоді РВ=6х см
Сторона АВ = АР + РВ = х + 6х = 7х =14x см
звідси х=2 см
Трикутник АDР-рівнобедрений
АD = АР = х см =2 см
Периметр Р = 2 + 2 + 14 + 14 = 32 см
Відповідь: периметр параллелограма 32 см
5) У ромба все стороны равны ( ЕСЛИ ЧТО ЗНАК "<" ЭТО УГОЛ)
АВ=ВС=СD=АД
Р= 4*АD
тогда сторона АD = Р/4 = 32/4 = 8 см.
В треугольнике КВD
< КВD = 15
< ВКД= 90
< ВДК = 180 - 90 - 15 = 75.
Т.к. ВD - диагональ ромба, а диагонали ромба являются биссектрисами его углов, то следовательно <АВС = <СDА =2*<ВDК = 2 * 75 = 150.
Соответственно <DАВ = <ВСD = 180 - 150 = 30 (сумма углов прилежащих к одной стороне ромба равна 180).
Из прямоугольного треугольника АВК найдем
ВК= АВ * sin 30 = 8 * 1/2 = 4 см.
6)
ДАНО:
АВСD - параллелограм.
ME = KE
ДОКАЗАТЬ: BKDM - параллелограм.
РЕШЕНИЕ: <DEK = <МЕВ (вертикальные).
<ЕМВ = <EKD (параллельные прямые) отсюдого,
треугольник DEK = треугольнику MEB. => DE = EB => BKDM - параллелограм (т.к. диагонали точкой пересечения делятся пополам)
Надо воспользоваться формулой: sin(2α) = 2*sin(α)*cos(α).
Функцию sin(α) выразим через cos(α).
sin(α) = √(1 - cos²(α)).
Подставим в первое уравнение:
-3/5 = 2*√(1 - cos²(α))*cos(α). Возведём обе части в квадрат.
9/25 = 4*(1 - cos²(α))*cos²(α). Приведём к общему знаменателю и раскроем скобки.
9 = 100cos²(α)) - 100cos^4(α).
Получили биквадратное уравнение. Введём замену: cos²(α) = t.
Тогда уравнение имеет вид: 100t² - 100t + 9 = 0.
Ищем дискриминант:
D=(-100)^2-4*100*9=10000-4*100*9=10000-400*9=10000-3600=6400;
Дискриминант больше 0, уравнение имеет 2 корня:
t_1=(√6400-(-100))/(2*100)=(80-(-100))/(2*100)=(80+100)/(2*100)=180/(2*100)=180/200=0,9;
t_2=(-√6400-(-100))/(2*100)=(-80-(-100))/(2*100)=(-80+100)/(2*100)=20/(2*100)=20/200=0,1.
Обратная замена: cos(α) = ±√t.
cos(α1,2) = ±√0,9 ≈ ±0,94868.
cos(α3,4) = ±√0,1 ≈ ±0,31623.
Данным косинусам соответствуют углы:
(α1,2) = 18,43495 и 161,5651 градусов,
(α3,4) = 71,5651 и 108,43495 градусов.
По заданию угол должен быть в промежутке (90° < α < 135°).
ответ: cos α = -√0,1 ≈ -0,31623.
Відповідь:
Пояснення:
4) Нехай АР - х см, тоді РВ=6х см
Сторона АВ = АР + РВ = х + 6х = 7х =14x см
звідси х=2 см
Трикутник АDР-рівнобедрений
АD = АР = х см =2 см
Периметр Р = 2 + 2 + 14 + 14 = 32 см
Відповідь: периметр параллелограма 32 см
5) У ромба все стороны равны ( ЕСЛИ ЧТО ЗНАК "<" ЭТО УГОЛ)
АВ=ВС=СD=АД
Р= 4*АD
тогда сторона АD = Р/4 = 32/4 = 8 см.
В треугольнике КВD
< КВD = 15
< ВКД= 90
< ВДК = 180 - 90 - 15 = 75.
Т.к. ВD - диагональ ромба, а диагонали ромба являются биссектрисами его углов, то следовательно <АВС = <СDА =2*<ВDК = 2 * 75 = 150.
Соответственно <DАВ = <ВСD = 180 - 150 = 30 (сумма углов прилежащих к одной стороне ромба равна 180).
Из прямоугольного треугольника АВК найдем
ВК= АВ * sin 30 = 8 * 1/2 = 4 см.
6)
ДАНО:
АВСD - параллелограм.
ME = KE
ДОКАЗАТЬ: BKDM - параллелограм.
РЕШЕНИЕ: <DEK = <МЕВ (вертикальные).
<ЕМВ = <EKD (параллельные прямые) отсюдого,
треугольник DEK = треугольнику MEB. => DE = EB => BKDM - параллелограм (т.к. диагонали точкой пересечения делятся пополам)