Сечение - равнобедренный прямоугольный треугольник с катетами - образующими конуса, не является осевым, так как образующая конуса наклонена к плоскости основания конуса под углом 30° (дано). =>
S = (1/2)·L² = 18 см² (дано) =>
L = 6 см.
В прямоугольном треугольнике, образованном высотой, радиусом (катеты) и гипотенузой (образующая), против угла 30° лежит катет (высота), равный половине гипотенузы (образующая конуса) =>
1. 30°
2
Объяснение:
1. Сумма острых углов прямоугольного треугольника = 90°
∠1 = 60° ⇒ ∠2 = 90 - 60 = 30°
2. Напротив большей стороны лежит больший угол, напротив меньшей стороны - меньший угол, СЛЕДОВАТЕЛЬНО короткий катет лежит против угла в 30°.
Катет, лежащий против угла в 30°, равен половине гипотенузы.
Короткий катет = x см, СЛЕДОВАТЕЛЬНО гипотенуза = 2x см . По условию сумма короткого катета и гипотенузы 30 см составим уравнение :
x +2x = 12
3x = 12
x=12/3
x= 4 (см) - меньший катет
Площадь основания конуса равна 27·π см².
Объяснение:
Сечение - равнобедренный прямоугольный треугольник с катетами - образующими конуса, не является осевым, так как образующая конуса наклонена к плоскости основания конуса под углом 30° (дано). =>
S = (1/2)·L² = 18 см² (дано) =>
L = 6 см.
В прямоугольном треугольнике, образованном высотой, радиусом (катеты) и гипотенузой (образующая), против угла 30° лежит катет (высота), равный половине гипотенузы (образующая конуса) =>
h = 3 cм.
По Пифагору R² = L² h² = 36 - 9 = 27 см². =>
R = 3√3 см. Тогда
S = π·R² = 27π.