Гострокутний - всі кути гострі (якщо a, b, c - сторони трикутника, причому с - найбільша, то c2<a2+b2
Прямокутний - один з кутів прямий (якщо a, b, c - сторони трикутника, причому с - найбільша, то c2=a2+b2
Тупокутний- один з кутів тупий (якщо a, b, c - сторони трикутника, причому с - найбільша, то c2>a2+b2
За сторонами
Різносторонній - всі сторони різні
Рівнобічний- дві сторони рівні (називаються бічними, третя - основою)
Рівносторонній (правильний) - всі сторони рівні
Медіана - відрізок, який сполучає вершину трикутника з серединою протилежної сторони (ділить сторону навпіл). Медіани трикутника перетинаються в одній точці і точкою перетину діляться у відношенні 2:1, починаючи від вершини)
Висота - відрізок, який проведений з вершини трикутника перпендмикулярно до протилежної сторони
Бісектриса, відрізок, який проведено з вершини до протилежної сторони і який ділить кут навпіл. Бісектриси трикутника перетинаються в одній точці і ділять протилежну сторону на відрізки, пропорційні прилеглим сторонам трикутника (якщо АК - бісектриса трикутника АВС, то ВК:КС=АВ:АС)
Середня лінія трикутника - відрізок, який сполучає середини двох сторін трикутника. Середня лінія трикутника паралельна третій стороні трикутника і дорівнює її половині
Гіпотенуза - найбільша сторона прямокутного трикутника (лежить напроти прямого кута), катети - дві інші сторони прямокутного трикутника
Центр кола, описаного навколо трикутника, знаходиться в точці перетину серединних перпендикулярів. В прямокутному трикутнику він знаходиться на середині гіпотенузи
Центр кола, вписаного в трикутник, знаходиться в точці перетину бісектрис трикутника
За кутами
Гострокутний - всі кути гострі (якщо a, b, c - сторони трикутника, причому с - найбільша, то c2<a2+b2
Прямокутний - один з кутів прямий (якщо a, b, c - сторони трикутника, причому с - найбільша, то c2=a2+b2
Тупокутний- один з кутів тупий (якщо a, b, c - сторони трикутника, причому с - найбільша, то c2>a2+b2
За сторонами
Різносторонній - всі сторони різні
Рівнобічний- дві сторони рівні (називаються бічними, третя - основою)
Рівносторонній (правильний) - всі сторони рівні
Медіана - відрізок, який сполучає вершину трикутника з серединою протилежної сторони (ділить сторону навпіл). Медіани трикутника перетинаються в одній точці і точкою перетину діляться у відношенні 2:1, починаючи від вершини)
Висота - відрізок, який проведений з вершини трикутника перпендмикулярно до протилежної сторони
Бісектриса, відрізок, який проведено з вершини до протилежної сторони і який ділить кут навпіл. Бісектриси трикутника перетинаються в одній точці і ділять протилежну сторону на відрізки, пропорційні прилеглим сторонам трикутника (якщо АК - бісектриса трикутника АВС, то ВК:КС=АВ:АС)
Середня лінія трикутника - відрізок, який сполучає середини двох сторін трикутника. Середня лінія трикутника паралельна третій стороні трикутника і дорівнює її половині
Гіпотенуза - найбільша сторона прямокутного трикутника (лежить напроти прямого кута), катети - дві інші сторони прямокутного трикутника
Центр кола, описаного навколо трикутника, знаходиться в точці перетину серединних перпендикулярів. В прямокутному трикутнику він знаходиться на середині гіпотенузи
Центр кола, вписаного в трикутник, знаходиться в точці перетину бісектрис трикутника
Объяснение:
Проведем через точку В прямую параллельно отрезку AB, затем продолжим отрезок AN до пересечения с этой прямой и поставим там точку К:
Задача на подобие и теорема Менелая. Задание 16
Рассмотрим треугольники ANC и BNK. Эти треугольники подобны, так как AC||BK. Стороны треугольника BNK относятся к сторонам треугольника ANC как 2:1.
Задача на подобие и теорема Менелая. Задание 16
Пусть AC=x, BK=2x.
Теперь продолжим отрезок MC до пересечения с прямой BK. Поставим там точку L.
Задача на подобие и теорема Менелая. Задание 16
Мы получили подобные треугольники LMB и AMC, сходственные стороны которых относятся как 3:2. Так как AC=x, то LB=1,5x.
Пусть LM=3n, MC=2n. Тогда LC=5n.
Теперь рассмотрим подобные треугольники LOK и AOC.
Задача на подобие и теорема Менелая. Задание 16
{LK}/{AC}={3,5x}/{x}={3,5}/1, следовательно, {LO}/{OC}={3,5}/1. Пусть LO=3,5z, OC=z. Тогда LO+OC=LC=4,5z.
Получили, что 5n=4,5z. Тогда MC=2n=9/5z. Отсюда MO=MC-CO=9/5z-z=4/5z
Отсюда CO:OM=z:4/5z=5:4=1,25.
ответ: 1,25