решить плз. Даны точки A(4;4) и B(6;18). Найди координаты точек C и D, если известно, что точка B — середина отрезка AC, а точка D — середина отрезка BC.
Диаметр окружности, вписанной в ромб, равен высоте ромба, а радиус, естественно, половине этой высоты. Радиус вписанной в ромб окружности можно найти по формуле r=S:рS — площадь ромба, где p — его полупериметр (p=2a, где a — сторона ромба) .Как известно, одна из формул площади ромба: площадь ромба равна половине произведения его диагоналей. S=d*D:2 Одна диагональ дана в условии, она равна 60 cм. Точкой пересечения диагонали ромба делятся пополам и образуют прямоугольные треугольники с гипотенузой 50 см, одним катетом 30см, второй предстоит найти. Сделать это можно по т.Пифагора, но получился египетский треугольник с отношением сторон 3:4:5. Отсюда ясно, что второй катет равен 40 см, и вся диагональ равна 40*2=80 см Площадь ромба d*D:2=60*80:2=240 см² r=S:р=240:(50*2)=24 см
пусть х-коэффициент отношения. Хорды КМ, МN, KN стягивают соответственные дуги. Тогда дуга КМ=6х, дуга MN=5x, дуга NK=7x,
6х+5х+7х=360градусов, 18х=360град, х=20 град.
дуга КМ=6*20=120град, дуга MN =5*20=100 град, дуга NK=7*20=140 град
угол между касательными, проведёнными из одной точки равен половине разности большей и меньшей дуг, находящихся между сторонами угла, поэтому
угол В=дуга КNM-дуга KM=(140+100-120):2=60град
угол С=дугаNKM-дугаNM=(120+140-100):2=80град
угол А=дуга NMK-дуга NK=(100+120-140):2=40град
2)каждая хорда делится двумя точками на 3 равные части, значит они равны между собой. 12:3=4 см каждая часть Периметр треугольника КМN=3*4=12
как то так
вторую незнаю
а радиус, естественно, половине этой высоты.
Радиус вписанной в ромб окружности можно найти по формуле
r=S:рS — площадь ромба, где p — его полупериметр
(p=2a, где a — сторона ромба)
.Как известно, одна из формул площади ромба:
площадь ромба равна половине произведения его диагоналей.
S=d*D:2
Одна диагональ дана в условии, она равна 60 cм.
Точкой пересечения диагонали ромба делятся пополам и образуют прямоугольные треугольники с гипотенузой 50 см, одним катетом 30см, второй предстоит найти.
Сделать это можно по т.Пифагора, но получился египетский треугольник с отношением сторон 3:4:5.
Отсюда ясно, что второй катет равен 40 см,
и вся диагональ равна 40*2=80 см
Площадь ромба
d*D:2=60*80:2=240 см²
r=S:р=240:(50*2)=24 см