Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
1)прямым может быть только угол при вершине, т.к. углы при основании равны, но два прямых угла в треугольнике быть не может.
2)внешний угол при основании не может быть тупым -ошибочка, т.к. равные углы при основании могут быть только острые, значит, внешние только тупые. А можно и так- внешний угол равен сумме двух внутренних, с ним не смежных. Т.к. один угол при вершине заведомо прямой, то сумма прямого и острого дает тупой угол.
3)внешний угол при вершине может быть только острым-опять мимо. Пояснение найдете в п. 2)
4)любой из углов может быть прямым - нет. объяснение в п. 1)
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
1)прямым может быть только угол при вершине, т.к. углы при основании равны, но два прямых угла в треугольнике быть не может.
2)внешний угол при основании не может быть тупым -ошибочка, т.к. равные углы при основании могут быть только острые, значит, внешние только тупые. А можно и так- внешний угол равен сумме двух внутренних, с ним не смежных. Т.к. один угол при вершине заведомо прямой, то сумма прямого и острого дает тупой угол.
3)внешний угол при вершине может быть только острым-опять мимо. Пояснение найдете в п. 2)
4)любой из углов может быть прямым - нет. объяснение в п. 1)