сечение пирамиды, проходящее через середины сторон ас, вс и ам, будет прямоугольником (это можно доказать, использовав теорему о трех перпендикулярах) .
площадь прямоугольника равна s = ab, где а, b - стороны прямоугольника.
одна из сторон этого прямоугольника будет средней линией треугольника авс и поэтому равна половине стороны ав, значит равна 3
другая сторона прямоугольника будет средней линией треугольника амс и поэтому равна половине стороны мс и равна 2
4. Назовём медиану, проведённую из точки B, BD. Медианы в треугольнике делят друг друга в отношении 2 : 1, считая от вершины, то есть BO : OD = 2 : 1
Так как прямые EF и AC параллельны, то ∠BAC = ∠BEF как соответственные углы.
Рассмотрим ΔABC и ΔEBF 1) ∠B - общий 2) ∠BAC = ∠BEF - из решения Отсюда следует, что эти треугольники подобны. Коэффициент подобия будет равен отношению BD и BO k = BD : BO = 3x : 2x = 3 : 2
Из подобия AC : EF = 3 : 2 15 : EF = 3 : 2 3EF = 30 EF = 10 см
ответ: 10 см
5. Найдём AB по теореме Пифагора: AB = √(25 + 75) = √100 = 10 см Напротив угла в 30° лежит катет в два раза меньше гипотенузы. AB = 2AC ⇒ ∠ABC = 30°
сечение пирамиды, проходящее через середины сторон ас, вс и ам, будет прямоугольником (это можно доказать, использовав теорему о трех перпендикулярах) .
площадь прямоугольника равна s = ab, где а, b - стороны прямоугольника.
одна из сторон этого прямоугольника будет средней линией треугольника авс и поэтому равна половине стороны ав, значит равна 3
другая сторона прямоугольника будет средней линией треугольника амс и поэтому равна половине стороны мс и равна 2
s = 3*2 = 6
так что площадь сечения будет 6 кв. ед. ))
Медианы в треугольнике делят друг друга в отношении 2 : 1, считая от вершины, то есть BO : OD = 2 : 1
Так как прямые EF и AC параллельны, то ∠BAC = ∠BEF как соответственные углы.
Рассмотрим ΔABC и ΔEBF
1) ∠B - общий
2) ∠BAC = ∠BEF - из решения
Отсюда следует, что эти треугольники подобны.
Коэффициент подобия будет равен отношению BD и BO
k = BD : BO = 3x : 2x = 3 : 2
Из подобия AC : EF = 3 : 2
15 : EF = 3 : 2
3EF = 30
EF = 10 см
ответ: 10 см
5. Найдём AB по теореме Пифагора:
AB = √(25 + 75) = √100 = 10 см
Напротив угла в 30° лежит катет в два раза меньше гипотенузы.
AB = 2AC ⇒ ∠ABC = 30°
ответ: 10 см, 30°
6. sinβ = BH : BC
BH = sinβ * BC = 7sinβ
tg α = BH : AH
AH = BH : tgα = 7sinβ : tgα
ответ: 7sinβ : tgα