решить проверочную 1. Точки A, B, K и T — середины отрезков MF, PF, PN и MN соответственно, MP = 10 см, FN = 16 см (рис. 9). Определите вид четырёхугольника ABKT и вычислите его периметр.
2 . Плоскость β пересекает стороны CF и CD треугольника CDF в точках M и N соответственно и параллельна стороне FD, MN = 6 см, FD = 21 см, MC = 10 см. Найдите сторону FC треугольника.
3. Треугольник ABC является изображением правильного треугольника A1B1C1 (рис. 16). Постройте изображение центра описанной окружности треугольника A1B1C1.
4. Плоскости α и β параллельны. Через точку D, находящуюся между этими плоскостями, проведены две прямые. Одна из них пересекает плоскости α и β в точках M1 и N1, а другая — в точках M2 и N2 соответственно. Найдите отрезок M1M2 , если он на 8 см больше отрезка N1N2 , N1M1= 30 см, DN1 = 5 см.
5. Точки A, B и M, не лежащие на одной прямой, являются соответственно параллельными проекциями двух соседних вершин параллелограмма и середины его противолежащей стороны. Постройте изображение этого параллелограмма.
108см²
Объяснение:
Фигура квадрат
Формула нахождения периметра квадрата
Р=4*АВ.
Найдем из этой формулы сторону квадрата.
АВ=Р:4=48:4=12 см сторона квадрата.
Теперь найдем площадь квадрата.
Sавсd=AB²=12²=12*12=144см² площадь квадрата.
Квадрат разделен на 4 равных треугольника.
Найдем площадь одного из этих треугольников.
S∆AED=Saвсd:4=144:4=36см² площадь одного треугольника.
Площадь фигуры, которой нам нужно найти состоит из 3 треугольников, если площадь одного треугольника равна 36, то трёх таких треугольников будет.
SABECD=3*S∆AED=3*36=108см²
Значит, CK = АМ = 5х , ВК = ВМ = 8х
ВМ = ВК = 8х , АМ = АЕ = 5х , СК = СЕ = 5х – как отрезки касательных к окружности
AB + BC + AC = P abc
8x + 5x + 8x + 5x + 5x + 5x = 72
36x = 72
x = 2
Из этого следует, что ВМ = ВК = 16 , АМ = АЕ = 10 , СК = СЕ = 10 → АВ = ВС = 26 , АС = 20
Рассмотрим ∆ АВЕ (угол АЕВ = 90°):
По теореме Пифагора:
АВ² = АЕ² + ВЕ²
ВЕ² = 26² – 10² = 676 – 100 = 576
ВЕ = 24
S abc =( 1/2 ) × AC × BE = ( 1/2 ) × 20 × 24 = 240
ОТВЕТ: S abc = 240