Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
S_AKM = 1/2 * AK * AM * sinA = 1/2*2c*b*sinA=bc*sinA,
S_KBL = 1/2 * KB * BL *sinB = 1/2 * c * 2a * sinB = ac*sinB
S_LCM = 1/2 * LC * MC * sinC = 1/2 * a * 2b * sinC = ab*sinC
S_AKM + S_KBL + S_LCM = bc*sinA + ac*sinB + ab*sinC = 2
С другой стороны,
S_ABC = 1/2 * AB * AC * sinA = 1/2 * 3c * 3b * sinA = 9/2 * bc*sinA
S_ABC = 1/2 * AB * BC * sinB = 1/2 * 3c * 3a * sinB = 9/2 * ac*sinB
S_ABC = 1/2 * BC * AC * sinC = 1/2 * 3a * 3b * sinC = 9/2 * ab*sinC
Сложим эти три выражения, получим:
3*S_ABC = 9/2 * (bc*sinA + ac*sinB + ab*sinC) = 9/2 * 2 = 9
Отсюда S_ABC = 3
Тогда S_KLM = S_ABC - (S_AKM + S_KBL + S_LCM) = 3 - 2 = 1
ответ: 1.