Решить. с точки о - точки пересечения медиан равностороннего треугольника abc - проведено перпендикуляр om к плоскости этого треугольника. найдите угол наклона прямой ма к плоскости авс, если ом = корень 3, ав = 3 корень 3
В трапеции ABCD боковые стороны AB=CD=13 см, .основания BC=15см ,AD=21 . ОПУСТИМ на основание АD высоты BE И СF. тогда EF=BC=15см AD-EF 36 - 12 AE=FD= 2 = = 2 = 12 см применив теорему пифагора к прямоугольному треугольнику ABE найдём высоту BE BE²=AB²-AE²=13²-12²=169-144= 25 или BE=5 см найдем площадь трапеции : S ( ABCD)= (BC+AD): 2 ×BE=(15+21):2×5 =36:2×5=90см² ответ: 90 см ²
ответ: S=44√2 см². (Если задание верно)
Объяснение:
"Найдите площадь параллелограмма, если его высоты равны 2 см и 22 см ??? , а острый угол равен 45°. "
***
ABCD - параллелограмм. ВЕ и ВК -высоты на стороны AD и CD соответственно.
Из Δ АВЕ ∠А=45*; ∠ВЕА=90* (ВЕ-высота); ∠АВЕ=45*.
Значит ΔАВЕ - равнобедренный АЕ=ВЕ=2 см.
∠С=45* (противоположные углы в параллелограмме равны);
∠B=∠D=180*-45*=135*. Найдем ∠СВК из ΔВСК. Сумма углов в треугольнике равна 180*. ∠СВК=180*-(90*+45*)= 45*;
ВС²=ВК²+КС²=22²+22²=484+484=968
ВС=√968=22√2 см;
S=ab, где а=2 см, b=22√2 см.
S=2*22√2=44√2 см².
AD-EF 36 - 12
AE=FD= 2 = = 2 = 12 см
применив теорему пифагора к прямоугольному треугольнику ABE найдём высоту BE
BE²=AB²-AE²=13²-12²=169-144= 25 или BE=5 см
найдем площадь трапеции :
S ( ABCD)= (BC+AD): 2 ×BE=(15+21):2×5 =36:2×5=90см² ответ: 90 см ²