Уравнение окружности радиуса R с центром в точке C (a; b) имеет вид:
(x – a)² + (y – b)² = R².
1. Радиус — расстояние от центра окружности до любойточки на окружности. Таким образом, радиус будет равен расстоянию от точки c (2; 1) до точки d (5; 5).
Расстояние между точками A (x₁; y₁) и B (x₂; y₂) вычисляется по формуле:
AB = √((x₁ - x₂)² + (y₁ - y₂)²).
Таким образом, расстояние между точками c (2; 1) и d (5; 5) будет равно:
1)Рассмотри треугольник ABC.Он прямоугольный,с углами 30,60,90 градусов (по условию).Тогда катет BC,лежащий против угла в 30 градусов,равен половине гипотенузы AB(по свойсту прямоугольного треугольника с углами 30,60,90)и,следовательно равен 92/2=46 2)Рассмотрим треугольник BCH.Он тоже прямоугольный,с углами 30,60,90(угол С равен 90 т.к СН высота,угол B равен 60 по условию).В нём угол С,равен 30 градусам.Напртив него лежит катет НВ,равный половине гипотенузы ВС,т.е равный 46\2=23 3)Чтобы найти ВН,нужно из АВ вычесть АН. ВН=92-23=69 ответ ВН=69
Уравнение окружности радиуса R с центром в точке C (a; b) имеет вид:
(x – a)² + (y – b)² = R².
1. Радиус — расстояние от центра окружности до любойточки на окружности. Таким образом, радиус будет равен расстоянию от точки c (2; 1) до точки d (5; 5).
Расстояние между точками A (x₁; y₁) и B (x₂; y₂) вычисляется по формуле:
AB = √((x₁ - x₂)² + (y₁ - y₂)²).
Таким образом, расстояние между точками c (2; 1) и d (5; 5) будет равно:
cd = R = √((2 - 5)² + (1 - 5)²) = √((- 3)² + (- 4)²) = √(9 + 16) = √25 = 5.
1. Подставим известные значения в уравнение окружности радиуса R = 5 с центром в точке c (2; 1):
(x – 2)² + (y – 1)² = 5²;
(x – 2)² + (y – 1)² = 25.
ответ: (x – 2)² + (y – 1)² = 25.
2)Рассмотрим треугольник BCH.Он тоже прямоугольный,с углами 30,60,90(угол С равен 90 т.к СН высота,угол B равен 60 по условию).В нём угол С,равен 30 градусам.Напртив него лежит катет НВ,равный половине гипотенузы ВС,т.е равный 46\2=23
3)Чтобы найти ВН,нужно из АВ вычесть АН. ВН=92-23=69
ответ ВН=69