В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
На картинке схематически представлен чертёж, как выглядит картинка в середине белой бумаги. Ширина картинки 27. Длина картинки 43. Расстояние от картинки до края белой бумаги равно x(это и есть ширина окантовки). Чтобы лучше представить что нужно сделать, можно схематически изобразить смещение картинки до края бумаги, тогда с другой стороны ширина окантовки будет в 2 раза больше, то есть 2x. Вторым шагом можно сместить картинку вверх, тогда ширина окантовки снизу будет 2x. Так как известна площадь картинки и окантовки (1785см²), и зная что площадь прямоугольника это произведение одной стороны на другую, несложно догадаться что делать дальше. Так как 27+2x это ширина белой бумаги. 43+2x это длина белой бумаги. Составим уравнение.
(МН·РН) = 4 ед.
(ОР·РК) = -2 ед.
Объяснение:
В прямоугольнике противоположные стороны равны =>
вектора МН = РК.
∠ РОК = 180° - 120° = 60° ( смежные углы).
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
(МН·РН) = (РК·РН) = 2·4·Cos60° = 4 ед.
(ОР·РК) = 2·2·Cos120° = -2 ед.
На картинке схематически представлен чертёж, как выглядит картинка в середине белой бумаги. Ширина картинки 27. Длина картинки 43. Расстояние от картинки до края белой бумаги равно x(это и есть ширина окантовки). Чтобы лучше представить что нужно сделать, можно схематически изобразить смещение картинки до края бумаги, тогда с другой стороны ширина окантовки будет в 2 раза больше, то есть 2x. Вторым шагом можно сместить картинку вверх, тогда ширина окантовки снизу будет 2x. Так как известна площадь картинки и окантовки (1785см²), и зная что площадь прямоугольника это произведение одной стороны на другую, несложно догадаться что делать дальше. Так как 27+2x это ширина белой бумаги. 43+2x это длина белой бумаги.
Составим уравнение.
(27+2x)(43+2x)=1785
1161+54x+86x+4x²=1785
4x²+140x+1161=1785
4x²+140x-624=0
x²+35x-156=0
D=35²+624=1225+624=1849
x=(-35+43)/2=4
x=(-35-43)/2=-39
Очевидно что ширина должна быть положительна. Получаем ответ x=4.
ответ: 4 см