Для начала найдем отношение ВР/РС. Для этого: Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD. ∆АКМ ~ ∆BKD по двум углам (1). ∆АРС ~ ∆DРВ по двум углам (2). Из (1) BD/AM=4 и BD=4AM = 2AC. Из (2) BP/PC=2. ВМ - медиана и по ее свойствам Sabm=Scbm. Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc. Sakm=Sabc*1/(2*5)=(1/10)*Sabc. Треугольники ABP и APC - треугольники с общей высотой к стороне ВC. Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc. Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc. Sabk/Skpcm=(2/5)/(7/30)=12/7.
1Теорема Пифагора звучит следующим образом: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Геометрическая формулировка требует ещё и понятия площади: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.2Начертите прямоугольный треугольник с вершинами A, B, C, где угол C – прямой. Сторону BC обозначьте a, сторону AC обозначьте b, сторону AB обозначьте c.3Проведите высоту из угла C и обозначьте её основание через H. Треугольники подобны, если два угла одного треугольника соответственно равны двум углам другого треугольника. Угол H – прямой, так же, как и угол C. Следовательно, треугольник ACH подобен треугольнику ABC по двум углам. Треугольник CBH также подобен треугольнику ABC по двум углам.4Составьте уравнение, где a относится к c, как HB относится к а. Соответственно, b относится к c, как AH относится к b.5Решите эти уравнения. Для того чтобы решить уравнение, помножьте числитель правой дроби на знаменатель левой дроби, а знаменатель правой дроби – на числитель левой дроби. Получаем: a в квадрате = сHB, b в квадрате = cAH.6Сложите эти два уравнения. Получаем: a в квадрате + b в квадрате = c (HB + AH). Так как HB + AH = c, то в результате должно получиться: a в квадрате + b в квадрате = c в квадрате. Что и требовалось доказать.
Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD.
∆АКМ ~ ∆BKD по двум углам (1).
∆АРС ~ ∆DРВ по двум углам (2).
Из (1) BD/AM=4 и BD=4AM = 2AC.
Из (2) BP/PC=2.
ВМ - медиана и по ее свойствам Sabm=Scbm.
Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc.
Sakm=Sabc*1/(2*5)=(1/10)*Sabc.
Треугольники ABP и APC - треугольники с общей высотой к стороне ВC.
Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc.
Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc.
Sabk/Skpcm=(2/5)/(7/30)=12/7.