Медиана ВД делит сторону АС на АД=СД=b/2. Биссектриса делит противоположную сторону на части, пропорциональные прилежащим к ней сторонам: ВО/ОД=ВС/СД=a*2/b. ВД=ВО+ОД=ВО+b*BO/2a=BO(2a+b)/2a. Тогда ВО/ВД=BO*2a/BO(2a+b)=2a/(2a+b). Аналогично ВЕ/ЕА=ВС/АС=а/b. AB=BE+EA=BE+b*BE/a=BE(a+b)/a, значит ВЕ/АВ=а/(а+b). Площади Sabd=1/2*АB*BД*sin B, Sbeo=1/2*BE*BO*sin B. Тогда Sbeo/Sabd=BE*BO/AB*BД=а/(а+b) * 2a/(2a+b)=2a²/(a+b)(2a+b). Медиана разбивает треугольник на два треугольника одинаковой площади, значит Sabc=2Sabd, Sabd=S/2. Тогда Sbeo=S*a²/(a+b)(2a+b) Площадь АДОЕ равна Sадое=Sabd-Sbeo=S/2-S*2a²/(a+b)(2a+b)=S(1/2-2a²/(a+b)(2a+b))=S*b*(3a+b)/2(a+b)(2a+b).
построим прямую OA от точки O до прямой MH так что угол OAM = 90 градусов,
это и есть расстояние от точки O до прямой MН
Треугольники MOA и MOK равны это следует из следующего :
1 в треуг ОАМ угол OAM = 90 гр
в треуг OMK угол OKM = 90 гр
2 угол АMO = углу KMO (биссектриса угла)
3 сторона треугольника MO общая для обоих треугольников
4 также угол MOA и угол MOK в обоих треуг. равны, поскольку
сумма углов в треуг. = 180 гр. ( вычитая 180 - 90 гр - известный угол)
Этих условий достаточно чтобы сделать вывод, что треугольники равны.
Следовательно OK = OA = 9
ответ 9
Биссектриса делит противоположную сторону на части, пропорциональные прилежащим к ней сторонам: ВО/ОД=ВС/СД=a*2/b.
ВД=ВО+ОД=ВО+b*BO/2a=BO(2a+b)/2a.
Тогда ВО/ВД=BO*2a/BO(2a+b)=2a/(2a+b).
Аналогично ВЕ/ЕА=ВС/АС=а/b. AB=BE+EA=BE+b*BE/a=BE(a+b)/a, значит ВЕ/АВ=а/(а+b). Площади Sabd=1/2*АB*BД*sin B, Sbeo=1/2*BE*BO*sin B.
Тогда Sbeo/Sabd=BE*BO/AB*BД=а/(а+b) * 2a/(2a+b)=2a²/(a+b)(2a+b).
Медиана разбивает треугольник на два треугольника одинаковой площади,
значит Sabc=2Sabd, Sabd=S/2.
Тогда Sbeo=S*a²/(a+b)(2a+b)
Площадь АДОЕ равна
Sадое=Sabd-Sbeo=S/2-S*2a²/(a+b)(2a+b)=S(1/2-2a²/(a+b)(2a+b))=S*b*(3a+b)/2(a+b)(2a+b).