От концов меньшего основания опустим перпендикуляры на нижнее основание. Образуются два равных прямоугольных треугольника с острыми углами 60° и 30°.Нижнее основание этитми перпендикулярами поделит на равные отрезки 6/3=2 см Катет в прямоугольном треугольнике будет равен 2 см, он лежит против угла в 30°. Значит гипотенуза будет в 2 раза больше. Гипотенузой будет боковая сторона трапеции и равна она будет 4 см. Высота трапеции вычисляется по теореме Пифагора h²=4²-2²=16-4=12; h=√12=2√3.
Если в основании пирамиды лежит прямоугольный треугольник с катетом 6 см и гипотенузой 12 см, то острый угол против катета в 6 см равен 30 градусов.
Второй катет равен 6/tg 30° = 6√3 см.
Площадь основания So = (1/2)*6*6√3 = 18√3 см².
Если все боковые ребра наклонены под углом 30º, то проекции этих рёбер на основание - это радиусы R описанной около треугольника основания окружности.
R = c/2 = 12/2 = 6 см.
Отсюда находим высоту Н пирамиды.
H = R*tg 30° = 6*(√3/3) = 2√3 см.
Теперь получаем ответ:
V = (1/3)SoH = (1/3)*18√3 *2√3 = 36 см³.
.
8√3 см²
Объяснение:
От концов меньшего основания опустим перпендикуляры на нижнее основание. Образуются два равных прямоугольных треугольника с острыми углами 60° и 30°.Нижнее основание этитми перпендикулярами поделит на равные отрезки 6/3=2 см Катет в прямоугольном треугольнике будет равен 2 см, он лежит против угла в 30°. Значит гипотенуза будет в 2 раза больше. Гипотенузой будет боковая сторона трапеции и равна она будет 4 см. Высота трапеции вычисляется по теореме Пифагора h²=4²-2²=16-4=12; h=√12=2√3.
Можно вычислить теперь площадь трапеции
S=(2+6)/2·2√3=8√3