1. Раз BAD = 90 градусов и ABD = 45 градусов, то оставшийся угол ADB= 180-90-45=45 градусов. 2. Судя по этим углам, можно заключить, что AD = AB, а раз AB = AC = BC, то AD = AB = BC = AC. 3. Раз в треугольнике AD = AC, то и угол ADC = угол ACD. 4. В треугольнике ABC угол A = угол B = угол C = 180/3 = 60 градусов. 5. В треугольнике ACD, как и всегда, сумма углов = 180 градусов. Но раз там угол D = угол C, то возьмём один из них за х. Получается, что х+х+90(угол DAB)+60(угол BAC) = 180. 180-90-60=2х 30=2х х=15 градусов = угол ACD = ADC. 6. Угол D, как было указано в пункте №1, равен 45 градусам. Этот угол состоит из угла ADC (15 градусов) и угла CDB (который нам и надо найти). Получается, что: 45=15+CDB CDB = 30 градусов
так как K и M по условию середины сторон AB и ВС, то KM - средняя линия тр. ABC
AB=BC (по условию тр. равнобедренный), след-но BK=BM и угол BKM = углу BMK (углы при основании равнобедренного тр.)
BD - медиана (из определения - отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны), след-но KD=DM
Значит по первому признаку равенства треугольников: Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
эти треугольники равны (BK=BM, KD=DM, угол BKM = углу BMK)
2. Судя по этим углам, можно заключить, что AD = AB, а раз AB = AC = BC, то AD = AB = BC = AC.
3. Раз в треугольнике AD = AC, то и угол ADC = угол ACD.
4. В треугольнике ABC угол A = угол B = угол C = 180/3 = 60 градусов.
5. В треугольнике ACD, как и всегда, сумма углов = 180 градусов. Но раз там угол D = угол C, то возьмём один из них за х. Получается, что х+х+90(угол DAB)+60(угол BAC) = 180.
180-90-60=2х
30=2х
х=15 градусов = угол ACD = ADC.
6. Угол D, как было указано в пункте №1, равен 45 градусам. Этот угол состоит из угла ADC (15 градусов) и угла CDB (который нам и надо найти). Получается, что:
45=15+CDB
CDB = 30 градусов
Дано тр. ABC
К, M - середины AB и ВС
AB=BC
BD - медиана
Док-ть:
тр. BKD = тр. BMD
Док-во:
так как K и M по условию середины сторон AB и ВС, то KM - средняя линия тр. ABC
AB=BC (по условию тр. равнобедренный), след-но BK=BM и угол BKM = углу BMK (углы при основании равнобедренного тр.)
BD - медиана (из определения - отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны), след-но KD=DM
Значит по первому признаку равенства треугольников: Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
эти треугольники равны (BK=BM, KD=DM, угол BKM = углу BMK)