В равнобедренном тр-ке боковые стороны равны. Биссектриса в равнобедренном тр-ке является его высотой и медианой. Биссектриса равнобедренного тр-ка делит его на 2 равных прямоугольных тр-ка.. Рассмотрим один из них: 1 катет = = биссектрисе =15см, второй катет= половине основания данного в задаче тр-ка = Х, гипотенуза = боковой стороне = 17 см. По теореме Пифагора находим катет (Х) Х^2 = 17^2 - 15^2 X^2 = 289 - 225 = 64 X = 8 Искомая S тр-ка = 2( 8*15)/ 2 = 120(см^2) Искомый периметр тр-ка = 17 +17+ 16= 50 (см)
Бо'льшая ср линия треуг-ка, параллельна большей стороне прямоуг тег-ка, т.е. гипотенузе.Т.е. необходимо найти DE Меньший катет лежит против меньшего угла CAB, следовательно больший угол CBA(т.е тот который больше другого острого угла) лежит против большего катета. Пусть угол CAB=x Тогда угол ABC=x+a Т.к. сумма углов треуг-ка равна 180, а угол АСВ=90, легко вычислить, что угол CAB=180-90-(x+a) x=180-90-x-a 2x=90-a x=(90-a)/2 Далее необходимо доказать подобие треуг-ков ACB и DCE Т.к треуг ACB и DCE подобны, то угол BAC=углу EDC ED=EC*sin угла CDE = b/2 *sin ((90-a)/2)
Биссектриса в равнобедренном тр-ке является его высотой и медианой.
Биссектриса равнобедренного тр-ка делит его на 2 равных прямоугольных тр-ка..
Рассмотрим один из них: 1 катет = = биссектрисе =15см, второй катет= половине основания данного в задаче тр-ка = Х, гипотенуза = боковой стороне = 17 см. По теореме Пифагора находим катет (Х)
Х^2 = 17^2 - 15^2
X^2 = 289 - 225 = 64
X = 8
Искомая S тр-ка = 2( 8*15)/ 2 = 120(см^2)
Искомый периметр тр-ка = 17 +17+ 16= 50 (см)
Меньший катет лежит против меньшего угла CAB, следовательно больший угол CBA(т.е тот который больше другого острого угла) лежит против большего катета.
Пусть угол CAB=x
Тогда угол ABC=x+a
Т.к. сумма углов треуг-ка равна 180, а угол АСВ=90, легко вычислить, что
угол CAB=180-90-(x+a)
x=180-90-x-a
2x=90-a
x=(90-a)/2
Далее необходимо доказать подобие треуг-ков ACB и DCE
Т.к треуг ACB и DCE подобны, то угол BAC=углу EDC
ED=EC*sin угла CDE = b/2 *sin ((90-a)/2)