1) Рассмотрим ΔАВС, вектор а лежит на стороне АВ, вектор b лежит на стороне АD . Разность векторов а-b=DВ ( вектор) Уточняю длина ( или модуль) вектора равна длине отрезка на котором он лежит. Значит нужно найти отрезок DВ и АВ=13,АD=19 .
2) Достроим ΔАВD до параллелограмма , тогда сумма векторов а+b=АВ+АD=( по правилу параллелограмма ) = вектору АС. Тогда |AC|=|a+b|=24. Значит длина отрезка АС=24. По свойству диагоналей параллелограмма АО=12( О-точка пересечения диагоналей).
3) По свойству диагоналей параллелограмма: "сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон " имеем: AC²+BD²=2(AB²+AD²)
Строишь радиусы в точки, где кончается хорда. Получаешь р/б треугольник с углом при вершине 120 °. Строишь в нем высоту к основанию. Получаешь два равных прямоугольных треугольника с углами 30°, 60°, 90°. Высота делит хорду пополам, поэтому против угла 60° лежит сторона 6 корней из 3. Гипотенуза тр-ков, которая равна радиусу, равна (6 корней из 3)/cos 30 ° = 12. Отсюда, по определению меры угла, длина дуги = 12* (120/180)*ПИ = 8 ПИ. Площадь сектора = ПИ * (радиус в квадрате)*(радианная мера дуги/2ПИ) => ПИ*144*((2ПИ/3)/ПИ)= ПИ*144*(1/3) = 48 ПИ.
Модуль вектора |a|= 13 ,|b| = 19,|a +b | = 24. Найдите | a-b |.
Объяснение:
1) Рассмотрим ΔАВС, вектор а лежит на стороне АВ, вектор b лежит на стороне АD . Разность векторов а-b=DВ ( вектор) Уточняю длина ( или модуль) вектора равна длине отрезка на котором он лежит. Значит нужно найти отрезок DВ и АВ=13,АD=19 .
2) Достроим ΔАВD до параллелограмма , тогда сумма векторов а+b=АВ+АD=( по правилу параллелограмма ) = вектору АС. Тогда |AC|=|a+b|=24. Значит длина отрезка АС=24. По свойству диагоналей параллелограмма АО=12( О-точка пересечения диагоналей).
3) По свойству диагоналей параллелограмма: "сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон " имеем: AC²+BD²=2(AB²+AD²)
24²+BD²=2(13²+19²), BD=√(2*(169+361)-576)=√484=22.
Площадь сектора = ПИ * (радиус в квадрате)*(радианная мера дуги/2ПИ) => ПИ*144*((2ПИ/3)/ПИ)= ПИ*144*(1/3) =
48 ПИ.