1) Перша ознака подібності трикутників (за двома кутами)
Якщо два кути одного трикутника відповідно дорівнюють двом кутам другого трикутника, то такі трикутники є подібними.
2) Друга ознака подібності трикутників (за двома сторонами і кутом між ними)
Якщо дві сторони одного трикутника пропорційні двом сторонам другого трикутника і кути, утворені цими сторонами, рівні, то такі трикутники є подібними.
3) Третя ознака подібності трикутників (за трьома сторонами)
Якщо три сторони одного трикутника пропорційні трьом сторонам другого трикутника, то такі трикутники є подібними.
(ед.)
Объяснение:
Дано: ΔАВС - прямоугольный.
АС = 3; АВ = 4; ВС = 5.
Окр. O,r - вписанная.
ЕК ⊥ ВС.
Найти: ЕК.
1. Рассмотрим АМОР.
∠А = 90° (условие);
Радиус, проведенный в точку касания перпендикулярен касательной.⇒ ОР ⊥ АС; ОМ ⊥ АВ.
Если две прямые перпендикулярны третьей, то они параллельны между собой.⇒ АМ || АР; АР || МО.
⇒ АМОР - прямоугольник.
Противоположные стороны прямоугольника равны.⇒ АМ = АР; АР = МО.
МО = АР = r ⇒ АМ = АР = АР = МО.
⇒ АМОР - квадрат.
2. Найдем r по формуле:
, где a и b - катеты, с - гипотенуза.
⇒ АМ = АР = АР = МО=1
3. Рассмотрим ΔАВС и ΔМВН - прямоугольные.
∠В - общий;
⇒ ΔАВС ~ ΔМВН (по двум углам).
Составим отношение сходственных сторон:
4. Рассмотрим ΔЕМО и ΔОКН - прямоугольные.
МО = ОК = r
∠1 = ∠2 (вертикальные)
⇒ ΔЕМО = ΔОКН (по катету и острому углу)
⇒ ЕО = ОН (как соответственные элементы)
МО +ОН = ЕО + ОК = МН =
⇒
Объяснение:
1) Перша ознака подібності трикутників (за двома кутами)
Якщо два кути одного трикутника відповідно дорівнюють двом кутам другого трикутника, то такі трикутники є подібними.
2) Друга ознака подібності трикутників (за двома сторонами і кутом між ними)
Якщо дві сторони одного трикутника пропорційні двом сторонам другого трикутника і кути, утворені цими сторонами, рівні, то такі трикутники є подібними.
3) Третя ознака подібності трикутників (за трьома сторонами)
Якщо три сторони одного трикутника пропорційні трьом сторонам другого трикутника, то такі трикутники є подібними.