Конус. Образующая равностороннего конуса наклонена к основанию под углом 60 градусов. Образующая равна двум радиусам: L = 2Rk. Радиус его основания равен: Rk = H/√3. Площадь основания Sok = πRk² = πH²/3. Площадь Sбок боковой поверхности равна: Sбок = πRL = π(H/√3)*(2H/√3) = (2/3)πH²/3. Площадь S полной поверхности равна: S = Sok + Sбок = πRL = πH²/3 + (2/3)πH²/3 = πH².
Цилиндр. Радиус его основания равен: Rц = H/2. Площадь основания Soц = πRц² = πH²/4. Площадь Sбок боковой поверхности равна: Sбок = 2πRцH = 2π(H/2)*H = πH². Площадь S полной поверхности равна: S = 2Soц + Sбок = πH²/2 + πH² = (3/2)πH².
ответ: отношение площадей их полных поверхностей равно 1:(1,5).
Пусть острый угол параллелограмма равен х°, тогда тупой угол параллелограма равен 180-х°, а угол между высотами параллелограмма (180-х°):3= 60 -х/3.Проведем из вершины тупого угла высоты к сторонам параллелограмма( одна - к большей стороне, другая - к продолжению меньшей). Получаем два прямоугольный треугольника с острыми углами х° и 90-х°.Теперь при вершине тупого угла образовались три угла, составим уравнение:90-х° + 90-х°+60 -х/3= 180 -х-х-х/3 = -604/3 х= 60х=45?Значит, острый угол параллелограмма равен 45?, а тупой 135?ответ: два острых угла по 45?, и два тупых угла по 135?.
Образующая равностороннего конуса наклонена к основанию под углом 60 градусов. Образующая равна двум радиусам: L = 2Rk.
Радиус его основания равен: Rk = H/√3.
Площадь основания Sok = πRk² = πH²/3.
Площадь Sбок боковой поверхности равна:
Sбок = πRL = π(H/√3)*(2H/√3) = (2/3)πH²/3.
Площадь S полной поверхности равна:
S = Sok + Sбок = πRL = πH²/3 + (2/3)πH²/3 = πH².
Цилиндр.
Радиус его основания равен: Rц = H/2.
Площадь основания Soц = πRц² = πH²/4.
Площадь Sбок боковой поверхности равна:
Sбок = 2πRцH = 2π(H/2)*H = πH².
Площадь S полной поверхности равна:
S = 2Soц + Sбок = πH²/2 + πH² = (3/2)πH².
ответ: отношение площадей их полных поверхностей равно 1:(1,5).