Проведем из О к указанным сторонам трапеции перпендикуляры к АВ -а, к ВС - е, к СD-у
Рассмотрим ∆ ВОа и ВОе. Они прямоугольные , имеют общую гипотенузу ВО и по равному острому углу при В.
Если гипотенуза и прилежащий к ней угол одного прямоугольного треугольника соответственно равны гипотенузе и прилежащему углу другого треугольника, то такие треугольники равны. ⇒
катет аО = еО
Аналогично доказывается равенство катетов еО и уО треугольников СОе и СОу.
Отрезки Оа, Ое, Оу равны и как перпендикуляры от точки до прямой, являются расстоянием от О до АВ, до ВС и до AD.
Т.е. О - равноудалена от прямых АВ, ВС и AD, ч.т.д.
Как вариант: Из теоремы:
Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон, следует:
Точка О - общая для биссектрис двух углов с общей стороной ВС, следовательно, равноудалена от прямых, содержащих их стороны.
Трапеция тупоугольная, следовательно, высота ее будет лежать вне самой фигуры.Найдем ее. Острый угол при другом основании равен 135 - 90 = 45 градусов. Следовательно, боковая сторона, равная по условию 23 корня из 2, является гипотенузой равнобедренного прямоугольного треугольника, катеты которого равны между собой и равны высоте данной трапеции. Квадрат гипотенузы равен 23*23*2 = 1058, квадрат катета 1058/2 = 529, катет равен 23. Итак, высота 23, основания 6 и 10. Ищем площадь: 23(6+10)\2 = 184 ответ: 184
Проведем из О к указанным сторонам трапеции перпендикуляры к АВ -а, к ВС - е, к СD-у
Рассмотрим ∆ ВОа и ВОе. Они прямоугольные , имеют общую гипотенузу ВО и по равному острому углу при В.
Если гипотенуза и прилежащий к ней угол одного прямоугольного треугольника соответственно равны гипотенузе и прилежащему углу другого треугольника, то такие треугольники равны. ⇒
катет аО = еО
Аналогично доказывается равенство катетов еО и уО треугольников СОе и СОу.
Отрезки Оа, Ое, Оу равны и как перпендикуляры от точки до прямой, являются расстоянием от О до АВ, до ВС и до AD.
Т.е. О - равноудалена от прямых АВ, ВС и AD, ч.т.д.
Как вариант: Из теоремы:
Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон, следует:
Точка О - общая для биссектрис двух углов с общей стороной ВС, следовательно, равноудалена от прямых, содержащих их стороны.
Острый угол при другом основании равен 135 - 90 = 45 градусов. Следовательно, боковая сторона, равная по условию 23 корня из 2, является гипотенузой равнобедренного прямоугольного треугольника, катеты которого равны между собой и равны высоте данной трапеции.
Квадрат гипотенузы равен 23*23*2 = 1058, квадрат катета 1058/2 = 529, катет равен 23.
Итак, высота 23, основания 6 и 10. Ищем площадь: 23(6+10)\2 = 184
ответ: 184