Если угол ADF=90°-то ADB тоже 90°. Следует что BD - высота. Если D середина основания, тогда BD еще и медиана.
Доказательство:
Рассмотрим ∆ ADC и ∆ BDC.
1) ∠ADC=∠BDC=90º
2) AD=CD (так как BD — медиана треугольника ABC по условию).
3) Сторона BD — общая.
Следовательно, ∆ ADC = ∆ BDC (по двум сторонам и углу между ними).
Из равенства треугольников следует равенство соответствующих сторон: AB=BC. Значит, ∆ ABC — равнобедренный с основанием AC (по определению равнобедренного треугольника).
1. воспользуемся тем. что скалярное произведение двух ненулевых векторов равно произведению модулей этих векторов на косинус угла между векторами. по первому рисунку IuI=√(2²+2²)*5=5√8=2*5√2=10√2; IvI=2*5=10, угол между этими векторами α=45°; поэтому скалярное произведение этих векторов равно 25*2√2*2*cos45°=25*4√2*√2/2=25*4=100
2. можно отложить от одной точки векторы →а и →m, тогда они будут одинаковы по длине, равной 2*5=10 и противоположны по направлению, т.е. угол между векторами 180°, cos180°=-1, и скалярное произведение равно
10*10*(-1)=-100
3. если же отложить от одной точки векторы →n и →d, то видим, что угол между этими векторами равен 90°, тогда скалярное произведение равно нулю, т.к. cos90°=0
Если угол ADF=90°-то ADB тоже 90°. Следует что BD - высота. Если D середина основания, тогда BD еще и медиана.
Доказательство:
Рассмотрим ∆ ADC и ∆ BDC.
1) ∠ADC=∠BDC=90º
2) AD=CD (так как BD — медиана треугольника ABC по условию).
3) Сторона BD — общая.
Следовательно, ∆ ADC = ∆ BDC (по двум сторонам и углу между ними).
Из равенства треугольников следует равенство соответствующих сторон: AB=BC. Значит, ∆ ABC — равнобедренный с основанием AC (по определению равнобедренного треугольника).
2) По аналогии с первым.
3) 18 (48-15-15)
1. воспользуемся тем. что скалярное произведение двух ненулевых векторов равно произведению модулей этих векторов на косинус угла между векторами. по первому рисунку IuI=√(2²+2²)*5=5√8=2*5√2=10√2; IvI=2*5=10, угол между этими векторами α=45°; поэтому скалярное произведение этих векторов равно 25*2√2*2*cos45°=25*4√2*√2/2=25*4=100
2. можно отложить от одной точки векторы →а и →m, тогда они будут одинаковы по длине, равной 2*5=10 и противоположны по направлению, т.е. угол между векторами 180°, cos180°=-1, и скалярное произведение равно
10*10*(-1)=-100
3. если же отложить от одной точки векторы →n и →d, то видим, что угол между этими векторами равен 90°, тогда скалярное произведение равно нулю, т.к. cos90°=0
ответ 1. 100; 2. -100; 3. 0