Так как угол С прямой, то значит АВ гипотенуза. В прямоугольном треугольнике противолежащий катет a = c sinα, а прилежащий углу катет вычисляется по формуле b = ccosα, катет, противолежащий углу, вычисляется по формуле а = b tg α1) ВС = AB sin α = 15·sin A = 15·1/3 = 5 (см)2) AC = AB cos α = 18·2/3 = 12 (см)3) AC = AB·sin α, AB = AC/sin α = 15/ 5/6 = 18 (см)4) BC = AB cosB , AB = BC/cos α = 18: 9/11 = 22(см)5) AC = BC·tgB, AC = 12·5/6 = 10(см)6) BC = AC/ tg B, BC = 26: 13/15 =30(см)
Построим треугольник , площадь которого равна площади трапеции. Пусть АВСД ---трапеция, АД II ВС. Из точки С проводим прямую , параллельно диагонали ВД(вниз) до пересечения с продолжением АД Пусть это точка М. ДВСМпараллелограмм. ΔАСМ имеет ту же высоту , что и трапеция, это расстояние от точки С до стороны АД . Обозначим эту высоту СК, а АМ=АД+ВС(ВС=ДМ). Очевидно, что площадь Δ АСМ = площади АВСД S=CK·(AD+BC)\2 Стороны ΔАСМ - это АС=20 , СМ=ВД=21, АМ=АД+ВС=2·14,5=29. Треугольник АСД подобен Египетскому , то есть , прямоугольный , и его площадь равна S=(20·21)/2=210 (кв . ед ) ответ : 210
ДВСМпараллелограмм.
ΔАСМ имеет ту же высоту , что и трапеция, это расстояние от точки С до стороны АД . Обозначим эту высоту СК, а АМ=АД+ВС(ВС=ДМ). Очевидно, что площадь Δ АСМ = площади АВСД
S=CK·(AD+BC)\2
Стороны ΔАСМ - это АС=20 , СМ=ВД=21, АМ=АД+ВС=2·14,5=29. Треугольник АСД подобен Египетскому , то есть , прямоугольный , и его площадь равна
S=(20·21)/2=210 (кв . ед )
ответ : 210