В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
DanilДюжик
DanilДюжик
12.04.2023 15:02 •  Геометрия

решить задачи по геометрии


решить задачи по геометрии

Показать ответ
Ответ:
Eugene1223
Eugene1223
21.03.2023 02:29

На сторонах АВ, ВС и СА треугольника АВС отмечены соответственно точки P, Q и R. Известно, что AP : PB = BQ : QC = CR : RA = 4, а площадь треугольника АВС равна 25 кв.см. Чему равна площадь треугольника PQR (в кв.см)?


Проведем ВВ₁⊥АС и РР₁⊥АС.

ΔАВВ₁ подобен ΔАРР₁ по двум углам (угол при вершине А общий, ∠АР₁Р = ∠АВ₁В = 90°), ⇒

РР₁ : ВВ₁ = АР : АВ = 4 : 5

РР₁ = 4/5 ВВ₁

AR = 1/5 AC

Sapr = 1/2 AR · PP₁ = 1/2 · 1/5 AC · 4/5 BB₁ = 4/25 (1/2 AC · BB₁) = 4/25 · Sabc


Проведем QQ₁⊥AC.

ΔСQQ₁ подобен ΔСВВ₁ по двум углам.

QQ₁ : BB₁ = CQ : CB = 1 : 5

QQ₁ = 1/5 BB₁

RC = 4/5 AC

Scqr = 1/2 RC · QQ₁ = 1/2 · 4/5 AC · 1/5 BB₁ = 4/25 (1/2 AC · BB₁) = 4/25 · Sabc


Проведем АА₁⊥ВС и РР₂⊥ВС.

ΔАА₁В подобен ΔРР₂В по двум углам.

РР₂ : АА₁ = РВ : АВ = 1 : 5

РР₂ = 1/5 АА₁

BQ = 4/5 BC

Sbpq = 1/2 BQ · PP₂ = 1/2 · 4/5 BC · 1/5 AA₁ = 4/25 (1/2 BC · AA₁) = 4/25 · Sabc


Spqr = Sabc - Sapq - Scqr - Sbpq = Sabc - 3 · 4/25 Sabc = Sabc - 12/25 Sabc = 

= 13/25 Sabc

Spqr = 13/25 · 25 = 13 см²

0,0(0 оценок)
Ответ:
kulakov2003
kulakov2003
11.05.2020 19:09
Проведём сечение пирамиды через рёбра BS и ES.
Плоскость этого сечения будет перпендикулярной к заданной плоскости сечения, так как диагональ АС перпендикулярна диагонали ВЕ.
В сечении получим 2 треугольника: BSE и KME.
Ребро BS как гипотенуза равно 6√2.
КМ - это линия наибольшего наклона плоскости.
Отрезок ВК на стороне ВЕ равен половине стороны шестиугольника как катет, лежащий против угла в 30 градусов.
Отношение ВК : ВЕ равно отношению SM : SE (3 / 12 = (3/√2) / (6√2), или 1/4 = 1/4.
Отсюда вывод: треугольники BSE и KME подобны. Отрезок КМ, как и BS, имеет наклон к плоскости основы под углом 45 градусов.

Сечение шестиугольной пирамиды плоскостью, проходящей через диагональ АС под углом 45 ° представляет собой пятиугольник, состоящий из трапеции и треугольника.

У трапеции нижнее основание АС равно
 AC = 2*6*cos30°  = 2*6*(√3/2) = 6√3.
Верхнее основание трапеции определяется из условия пересечения заданной плоскости с рёбрами SD и DF.
В плоскости ВSE верх трапеции - точка Н.
Высоту трапеции КН найдём из треугольника КНF₁, образованного пересечением заданной плоскости и плоскости, проходящей чрез рёбра SD и DF.
В этом треугольнике известно основание КF₁ = 3 + 3 = 6 и угол НКF₁ = 45°. Поэтому он подобен треугольнику F₁BS по двум углам.
Сторона F₁B равна 6 + 3 = 9.
Коэффициент подобия равен 6/9 = 2/3.Тогда КН = (2/3)*BS = (2/3)*6√2 = 4√2. Высота точки Н равна 4√2*sin 45° = 4√2*(√2/2+ = 4.
Верхнее основание трапеции определяется из условия подобия треугольников SH₁H₂ и SDF по высотам от вершины S, равными 2 и 6.
H₁H₂ = DF*(2/6) = 6√3*(1/3) = 2√3.

Тогда S₁ = (1/2)*((6√3)+(2√3))*4√2 = 16√2.

У треугольника ВМЕ высота точки М равна 6*(9/12) = 4,5.
Отсюда высота треугольника H₁МH₂ равна (4,5 - 4)/sin 45° = (1/2)/(√2/2) = (1/2)√2.
Тогда S₂ = (1/2)*(2√3))*((1/2)√2) = (1/2)√6.

Площадь сечения равна:
 S = S₁ + S₂ = (16√6) + (√6/2) = (33√6)/2 =   40.41658.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота